1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
|
#pragma once
#include <cmath>
#include <concepts>
#include <iomanip>
#include <numeric>
#include <functional>
#ifdef __x86_64__
#include <immintrin.h>
#endif
#include "prakcommon.hpp"
#include "prakmatrix.hpp"
namespace prak {
// :)
constexpr const double PI = 3.141592657;
constexpr const float fPI = 3.141592657f;
/// defines a type that supports arithmetic operation
template <typename T>
concept arithmetic = requires(T a) {
a + a;
a * a;
a - a;
a / a;
};
/// TODO: remove
enum struct operation { mul, div, add, sub };
/// vector multiply: fallback for non-floating-point types
template <arithmetic T>
void vmul(const T *op1, const T *op2, T *dest, size_t s) {
for (size_t i = 0; i < s; ++i) {
dest[i] = op1[i] * op2[i]; break;
}
}
/// vector multiply: float implementation
template <>
inline void vmul(const float *op1, const float *op2, float *dest, size_t s) {
if (s < 8) goto scalar;
__m256 b1;
__m256 b2;
for (size_t i = 0; i < s / 8; ++i) {
b1 = _mm256_load_ps(op1 + 8*i);
b2 = _mm256_load_ps(op2 + 8*i);
b1 = _mm256_mul_ps(b1, b2);
_mm256_store_ps(dest + 8*i, b1);
}
scalar:
for (size_t i = s - s % 8; i < s; ++i) {
dest[i] = op1[i] * op2[i];
}
}
/// vector multiply: double implementation
template <>
inline void vmul(const double *op1, const double *op2, double *dest, size_t s) {
if (s < 4) goto scalar;
__m256d b1;
__m256d b2;
for (size_t i = 0; i < s / 4; ++i) {
b1 = _mm256_load_pd(op1 + 4*i);
b2 = _mm256_load_pd(op2 + 4*i);
b1 = _mm256_mul_pd(b1, b2);
_mm256_store_pd(dest + 4*i, b1);
}
scalar:
for (size_t i = s - s % 4; i < s; ++i) {
dest[i] = op1[i] * op2[i];
}
}
/// vector division: non-floating-point types fallback
template <arithmetic T>
void vdiv(const T *op1, const T *op2, T *dest, size_t s) {
for (size_t i = 0; i < s; ++i) {
dest[i] = op1[i] / op2[i]; break;
}
}
/// vector division: floating point: single precision
template <>
inline void vdiv(const float *op1, const float *op2, float *dest, size_t s) {
if (s < 8) goto scalar;
__m256 b1;
__m256 b2;
for (size_t i = 0; i < s / 8; ++i) {
b1 = _mm256_load_ps(op1 + 8*i);
b2 = _mm256_load_ps(op2 + 8*i);
b1 = _mm256_div_ps(b1, b2);
_mm256_store_ps(dest + 8*i, b1);
}
scalar:
for (size_t i = s - s % 8; i < s; ++i) {
dest[i] = op1[i] / op2[i];
}
}
/// vector division: floating point: double precision
template <>
inline void vdiv(const double *op1, const double *op2, double *dest, size_t s) {
if (s < 4) goto scalar;
__m256d b1;
__m256d b2;
for (size_t i = 0; i < s / 4; ++i) {
b1 = _mm256_load_pd(op1 + 4*i);
b2 = _mm256_load_pd(op2 + 4*i);
b1 = _mm256_div_pd(b1, b2);
_mm256_store_pd(dest + 4*i, b1);
}
scalar:
for (size_t i = s - s % 4; i < s; ++i) {
dest[i] = op1[i] / op2[i];
}
}
inline float finalize(__m256 reg) {
// reg: x0 | x1 | x2 | x3 | x4 | x5 | x6 | x7
__m128 extr = _mm256_extractf128_ps(reg, 1);
// extr: x0 | x1 | x2 | x3
// __mm256_castps256_ps128: x4 | x5 | x6 | x7
extr = _mm_add_ps(extr, _mm256_castps256_ps128(reg));
// extr: x0+x4 | x1 + x5 | x2 + x6 | x3 + x7
extr = _mm_hadd_ps(extr, extr);
// extr: x0 + x1 + x2 + x5 | x2 + x3 + x6 x7 | ... | ...
return extr[0] + extr[1];
}
inline double finalize(__m256d reg) {
// reg: x0 | x1 | x2 | x3
reg = _mm256_hadd_pd(reg, reg);
// reg: x0 + x1 | x2 + x3 | ... | ...
return reg[0] + reg[1];
}
/// Fallback generic method to sum a vector
template <arithmetic T>
T vsum(const T *op, size_t size) {
T res;
for (size_t i = 0; i < size; ++i)
res += op[i];
return res;
}
/// Sum a vector, float implementation
template <>
inline float vsum(const float *op, size_t size) {
__m256 buf;
buf = _mm256_setzero_ps();
if (size < 8) goto scalar;
for (size_t i = 0; i < size / 8; ++i) {
__m256 next = _mm256_load_ps(op + 8*i);
buf = _mm256_add_ps(buf, next);
}
scalar:
float linear = 0;
for (size_t i = size - size%8; i < size; ++i) {
linear += op[i];
}
return linear + finalize(buf);
}
/// Sum a vector, double implementation
template <>
inline double vsum(const double *op, size_t size) {
__m256d buf;
buf = _mm256_setzero_pd();
if (size < 4) goto scalar;
for (size_t i = 0; i < size / 4; ++i) {
__m256d next = _mm256_load_pd(op + 4*i);
buf = _mm256_add_pd(buf, next);
}
scalar:
double linear = 0;
for (size_t i = size - size%8; i < size; ++i) {
linear += op[i];
}
return linear + finalize(buf);
}
template<arithmetic T>
T sum(const std::vector<T> &args) {
T res{};
for (const T& x : args) res += x;
return res;
}
template<std::floating_point T>
T prod(const std::vector<T> &args) {
T res = 1;
for (const T& x : args) res *= x;
return res;
}
template <std::floating_point T>
T hypot(const std::vector<T> &args) {
return std::sqrt(args[0]*args[0] + args[1]*args[1]);
}
template <arithmetic T, class op>
struct generic_arith {
T operator()(const std::vector<T> &args) {
return std::accumulate(args.cbegin(), args.cend(), T{}, op{});
}
};
template <arithmetic T>
struct plus: public generic_arith<T, std::plus<T>>{};
template <arithmetic T>
struct minus: public generic_arith<T, std::minus<T>>{};
template <arithmetic T>
T diff(const std::vector<T> &args) { return std::abs(args[0] - args[1]); }
template <arithmetic T>
T quot(const std::vector<T> &args) { return args[0] / args[1]; }
template <arithmetic T> T log(const std::vector<T> &arg){ return std::log(arg[0]); }
template <std::floating_point T> T inv(const std::vector<T> &arg){ return 1/arg[0]; }
template <typename T, T val> T add(const std::vector<T> &arg) { return val + arg[0]; }
template <typename T, T val> T sub(const std::vector<T> &arg) { return arg[0] - val; }
template <arithmetic T, T val> T mul(const std::vector<T> &arg) {return arg[0] * val; }
template <arithmetic T, T val> T div(const std::vector<T> &arg) {return arg[0] / val; }
template <arithmetic T>
T avg(const std::vector<T> &args) {
T init{};
for (const T &x : args) {
init += x;
}
return init / args.size();
}
// Actually calculates not the standard deviation, but standard
// deviation OF the mean. This means additionally dividing by \sqrt{N-1}
template <arithmetic T>
T stddev(const std::vector<T> &args) {
T sum = {};
const T a = avg<T>(args);
for (T el : args) {
sum += (a-el)*(a-el);
}
return std::sqrt(sum/args.size()/(args.size()-1));
}
// take a derivative of function `f` with arguments `at` and with differentiable variable being at index `varidx`
template <std::floating_point T>
T deriv4(function_t<T> f, std::vector<T> /*I actually do want a copy here*/ at, size_t varidx) {
T h = 1e-5;
T sum = 0;
at[varidx] += 2*h;
sum -= f(at);
at[varidx] -= h;
sum += 8 * f(at);
at[varidx] -= 2*h;
sum -= 8*f(at);
at[varidx] -= h;
sum += f(at);
return sum / (12*h);
}
/// get error of the calculated value
template <std::floating_point T>
T sigma(function_t<T> f, const std::vector<T> &args, const std::vector<T> &sigmas) noexcept(false) {
if (args.size() != sigmas.size()) throw dimension_error("function prak::sigma : Args.size() does not match sigmas.size()");
T sum = 0;
for (size_t i = 0; i < args.size(); ++i) {
T tmp = deriv4(f, args, i) * sigmas[i];
sum += tmp*tmp;
}
return std::sqrt(sum);
}
template <std::floating_point T>
pvalue<T> function(function_t<T> func, const std::vector<pvalue<T>> &args) {
std::vector<T> _args(args.size()),
_sgms(args.size());
for (size_t i = 0; const auto & [val, err] : args) {
_args[i] = val;
_sgms[i++] = err;
}
pvalue<T> ret = {func(_args), sigma(func, _args, _sgms)};
return ret;
}
/// calculate least-squares linear approximation to fit data
/// ax+b = y (ss is an error of Y value)
template <std::floating_point T>
void least_squares_linear(
const prak::vector<T> &xs,
const prak::vector<T> &ys,
const prak::vector<T> &ss,
struct pvalue<T> &a,
struct pvalue<T> &b)
{
if (xs.size() != ys.size() || xs.size() != ss.size()) {
std::cout << "x.size() = " << xs.size()
<< ", y.size() = " << ys.size()
<< ", s.size() = " << ss.size() << std::endl;
return;
}
[[assume(xs.size() == ys.size() && ys.size() == ss.size())]];
size_t sz = xs.size();
prak::vector<T> ones(sz);
prak::vector<T> ssq(sz);
prak::vector<T> ssq_m1(sz);
prak::vector<T> buf(sz);
prak::vector<T> buf_xs_ssq_m1(sz);
std::fill(ones.begin(), ones.end(), (T)1); // ones: [1]
vmul(ss.data(), ss.data(), ssq.data(), sz); // ssq: [ss*ss]
vdiv(ones.data(), ssq.data(), ssq_m1.data(), sz); // ssq_m1: [1/ss^2]
vmul(xs.data(), ssq_m1.data(), buf_xs_ssq_m1.data(), sz); // [xs / ss^2]
const T *ysd = ys.data(),
*xsd = xs.data();
T *ssqd = ssq.data(),
*ssq_m1d = ssq_m1.data(),
*onesd = ones.data(),
*bufd = buf.data(),
*buf_xs_ssq_m1d = buf_xs_ssq_m1.data();
vmul(buf_xs_ssq_m1d, xsd, bufd, sz); // buf: [xs^2 / ss^2]
T d1 = vsum(bufd, sz); // sum([xs^2 / ss^2])
T ssq_m1sum = vsum(ssq_m1d, sz); // sum(1 / ss^2)
vmul(xsd, ssq_m1d, bufd, sz); // buf: [xs / ss^2]
T d2 = vsum(buf_xs_ssq_m1d, sz); // sum([xs / ss^2])
T D = d1 * ssq_m1sum - d2*d2; // sum((xs/ss)^2) * sum(1/ss^2) - sum(xs/ss^2)^2
vmul(ysd, buf_xs_ssq_m1d, bufd, sz); // buf: [ys*xs/ss^2]
T da1 = vsum(bufd, sz); // sum([ys*xs/ss^2])
vmul(ysd, ssq_m1d, bufd, sz); // buf: [ys/ss^2]
T da2 = vsum(bufd, sz); // sum([ys/ss^2])
T DA = da1 * ssq_m1sum - da2 * d2; // sum([ys*xs/ss^2]) * sum([1/ss^2]) - sum([ys/ss^2]) * sum(xs/ss^2)
T DB = d1 * da2 - d2 * da1; // sum([xs^2/ss^2]) * sum([ys/ss^2]) - sum([xs/ss^2]) * sum(ys*xs/ss^2)
a.val = DA/D;
a.err = sqrt(ssq_m1sum / D);
b.val = DB/D;
b.err = sqrt(d1 / D);
}
/// May throw std::bad_optional_access
template <typename T>
std::enable_if<std::is_arithmetic_v<T>, std::vector<pvalue<T>>>
polynominal_regression(
size_t degree,
std::vector<T> data_x,
std::vector<T> data_y,
std::optional<std::vector<T>> data_errors = std::nullopt)
{
++degree; // hack)
size_t data_size = data_x.size();
if (data_size != data_y.size() || (data_errors.has_value() && data_errors->size() != data_size))
throw dimension_error("Xs, Ys or Sigmas do not match sizes");
struct matrix<T> X(data_size, degree),
Y(data_size, 1),
B(degree, 1),
W = matrix<T>::identity(data_size);
// initialize X
for (size_t row = 0; row < X.rows; ++row) {
X.SUBSCR_OPRTR(row, 0) = 1;
for (size_t col = 1; col < X.cols; ++col) {
X.SUBSCR_OPRTR(row, col) = X.SUBSCR_OPRTR(row, col-1) * data_x[row];
}
}
// initialize Y
std::memcpy(Y.data(), data_y.data(), sizeof (T) * data_size);
// initialize W
if (data_errors.has_value()) {
std::vector<T> &err_value = *data_errors;
for (size_t i = 0; i < err_value.size(); ++i)
W.data()[i * (data_size + 1)] = 1 / err_value[i] / err_value[i];
}
std::cerr << X << '\n' << Y << '\n' << W << '\n';
matrix<T> X_T_W = X.tr() * W;
matrix<T> tmp1 = (X_T_W * X).inv().value();
B = tmp1 * X_T_W * Y;
B.print();
// TODO: FINISH (with covariation matrix)
return {};
}
} // namespace prak
|