1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
|
#include <iostream>
#include "include/praktable.hpp"
using table = prak::table<double>;
using vecarg = const std::vector<f64> &;
using f64p = prak::pvalue<f64>;
table data;
const f64p g = {9.815710602, 0.001};
f64 get(std::string key) { return data[key, 0]; }
f64 getsqrt(vecarg v) { return std::sqrt(std::abs(get("x4_1") - v[0])); }
f64 a_A(vecarg a) { return 2/a[0]/a[0]; }
f64 J_mrga(vecarg a) { return a[0] * a[1] * a[1] * (a[2]/a[3] - 1); }
f64 ξ_x012(vecarg x) { return (x[1] - x[0]) / (2*x[2] - x[0] - x[1]); }
f64 Mfr_mgRξ(vecarg a) { return a[0] * a[1] * a[2] * a[3]; }
f64 J_mrgtx034(vecarg a) { return a[0]*a[1]*a[1]*(a[2]*a[3]*a[3] / 2 / std::pow(std::sqrt(a[4]-a[6]) - std::sqrt(a[4]-a[5]), 2) - 1); }
table ex1(std::string s) {
table ret(s);
const f64 dx03 = 0.04;
f64p m1 = {get("m1"), 0.00001},
R = {get("R2"), 0.00005},
x2 = {get("x2_1"), 0.01};
ret .add_column("x1", std::vector<f64>(ret.rows, NAN))
.add_column("t", std::vector<f64>(ret.rows, NAN))
.add_column("st", std::vector<f64>(ret.rows, NAN))
.add_column("sqrt", std::vector<f64>(ret.rows, NAN))
.add_column("x0", std::vector<f64>(ret.rows, NAN))
.add_column("ξ", std::vector<f64>(ret.rows, NAN))
.apply([dx03](vecarg a){return a[0]+dx03;}, {"x3"}, "x0")
.apply(prak::avg<f64>, {"x11", "x12", "x13"}, "x1")
.apply(prak::avg<f64>, {"t1", "t2", "t3"}, "t")
.apply(prak::stddev<f64>, {"t1", "t2", "t3"}, "st")
.apply(getsqrt, {"x0"}, "sqrt")
.apply([x2](vecarg a){return (a[0]-a[1])/((x2.val-a[0])+(x2.val-a[1]));}, {"x0", "x1"}, "ξ")
.delete_cols({"x11", "x12", "x13", "t1", "t2", "t3"});
f64p x1 = {ret.col_avg("x1"), 0.01 * std::sqrt(ret.rows)};
auto [A, B] = ret.least_squares_linear("sqrt", "t", "st", std::nullopt);
f64p a = prak::function<f64>(a_A, {A});
f64p J = prak::function<f64>(J_mrga, {m1, R, g, a});
f64p ξ = {ret.col_avg("ξ"), ret.col_stddev("ξ")};
f64p Mfr = prak::function<f64>(Mfr_mgRξ, {m1, g, R, ξ});
ret.write_plot("mnk.plot", "sqrt", "t", "st");
std::cout << ret << "\nA = " << A << "\nB = " << B
<< "\na = " << a << "\nJ = " << J
<< "\nξ = " << ξ << "\nМомент трения Mfr = " << Mfr
<< std::endl;
return ret;
}
void ex2(std::string data) {
table table(data);
f64p R0 = {get("R2_0"), 0.00005},
R1 = {get("R2_1"), 0.00005},
m0 = {get("m2_0"), 0.00001},
m1 = {get("m2_1"), 0.00001},
x0 = {get("x0_2"), 0.01},
x3 = {get("x3_2"), 0.01},
x4 = {get("x4_2"), 0.01};
table .add_column("t", std::vector<f64>(table.rows, NAN))
.add_column("st", std::vector<f64>(table.rows, NAN))
.add_column("Ji", std::vector<f64>(table.rows, NAN))
.add_column("sJi", std::vector<f64>(table.rows, NAN))
.add_column("0", std::vector<f64>(table.rows, 0.0))
.apply(prak::avg<f64>, {"t1", "t2", "t3"}, "t")
.apply(prak::stddev<f64>, {"t1", "t2", "t3"}, "st")
.delete_cols({"t1", "t2", "t3"})
;
for (size_t i = 0; i < table.rows; ++i) {
std::vector<f64p> args = {
table["M", i] == 0 ? m0 : m1,
table["R", i] == 0 ? R0 : R1,
g, {table["t", i], table["st", i]},
// я пр**бался и только на первом измерении у меня x4 = 4см, на остальных 10см
x0, x3, table["M", i] == 0 && table["R", i] == 0 ? f64p{0.04, 0.01} : x4,
};
auto [val, err] = prak::function<f64>(J_mrgtx034, args);
table["Ji", i] = val;
table["sJi", i] = err;
}
table.write_plot("ex2_1.plot", "Ji", "0", "sJi");
table.multiply_column("sJi", 1 / std::sqrt(1 - 0.75));
table.write_plot("ex2_2.plot", "Ji", "0", "sJi");
std::cout << table;
}
int main() {
data = table("common");
ex1("data1");
ex2("data2");
return 0;
}
|