1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
|
#ifndef JUSTANOTHERCATGIRL_HEADERS_CONTAINER
#define JUSTANOTHERCATGIRL_HEADERS_CONTAINER
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
/* ----------------------------------------------------------------- */
/* -----------------UTILITY HEADER---------------------------------- */
/* ----------------------------------------------------------------- */
#define stringify(val) _stringify_helper(val)
#define _stringify_helper(val) #val
#define string_concat_separator(first, ...) stringify(first) ";" string_concat_separator(__VA_ARGS__)
#define struct_member_size(type, member) sizeof(( (type*)0 )->member)
typedef unsigned char byte;
/// Find closest powers of 2
#ifdef __GNUC__
#define upper_2_power_32(number) (32 - __builtin_clz(number))
#define upper_2_power_64(number) (64 - __builtin_clzl(number))
#else
#include <intrin.h>
#include <stdint.h>
#define upper_2_power_32(number) __bit_scan_32(number)
#define upper_2_power_64(number) __bit_scan_64(number)
unsigned long __bit_scan_32(int32_t number);
unsigned long __bit_scan_64(int64_t number);
#endif
/// define FALLTHROUGH macro
#if defined(__clang__) || defined(__GNUC__)
#define FALLTHROUGH __attribute__((fallthrough))
#elif defined(_MSC_VER)
#define FALLTHROUGH __fallthrough()
#else
#define FALLTHROUGH ((void)0)
#endif
/// define TODO macro
#define TODO (void)(*(volatile char*)0)
/// typedefs for array qsort
typedef int(*qsort_cmp_t)(const void*, const void*);
#define get_qsort_cmp(type) __qsort_cmps[sizeof(type)]
extern const qsort_cmp_t __qsort_cmps[64];
typedef void*(*memcpy_t)(void* restrict, const void*, size_t);
/// default qsort_cmp_t functions to be used with integral types.
#ifdef CONTAINER_EXPOSE_HELPERS
#define _CONTAINER_STATIC
int __default_char_cmp(const void* a, const void* b);
int __default_short_cmp(const void* a, const void* b);
int __default_int_cmp(const void* a, const void* b);
int __default_long_cmp(const void* a, const void* b);
int __default_long_long_cmp(const void* a, const void* b);
#else
#define _CONTAINER_STATIC static
#endif // CONTAINER_EXPOSE_HELPERS
/* ----------------------------------------------------------------- */
/* -------------------------ARRAY HEADER---------------------------- */
/* ----------------------------------------------------------------- */
/* A dynamic array implementation
* As this is a header-only library, you have to define `CONTAINER_IMPLEMENTATION` macro the first time you include this
* header. This implementation uses the idea of storing metadata to the left of the array data, so that the user can
* think of it (and use it) as normal array. Most of the API functions are defined as macros that either do some work
* or call the implementation. They are not all-caps because they are more like functions.
* As source is the best documentation, you should check yourself what is macro and what is not. generally, everything
* prefixed with `array_` is a macro. Some of the macros evaluate their arguments more than once (the multiline ones),
* so as a rule of thumb, you should only ever pass evaluated identifiers or expressions with no side-effects (like `ptr+2`)
* to all of the macros in this library.
*/
/// size of the array header. should not be used directly, unless you know what you are doing
#define DYNARRAY_HEADER_SIZE sizeof(struct _dynarray_header)
/// allocate new array of <size> elements of type <type>.
#define array_new(type, size) _alloc_dynarray(sizeof(type), size)
/// get amount of elements in the array
#define array_size(array) (((struct _dynarray_header *)((byte *)(array)-DYNARRAY_HEADER_SIZE))->size)
/// get array capacity (it's maximum size unitl reallocation)
#define array_capacity(array) (((struct _dynarray_header *)((byte *)(array)-DYNARRAY_HEADER_SIZE))->capacity)
/// get element size of an array (same as sizeof(array[0]), except not constant-expression)
#define array_element_size(array) (((struct _dynarray_header *)((byte *)(array)-DYNARRAY_HEADER_SIZE))->memb_size)
/// free a dynamic array
#define array_free(array) free(array_header(array))
/// get dynamic array header. should not be used directly, unless you know what you are doing.
#define array_header(array) ((struct _dynarray_header *)(((byte *)array) - DYNARRAY_HEADER_SIZE))
/// allocate new array of <size> element of type <type> and initialize it from buffer
#define array_new_buffer_copy(type, buffer, size) _alloc_dynarray_buffer(sizeof(type), size, buffer, sizeof(type) * size)
/// add one new element to the end of the array. May invalidate previous pointer if size+1 > capacity.
#define array_push(array, element) \
do { \
struct _dynarray_header *_ahdr = array_header(array); \
if (_ahdr->size + 1 > _ahdr->capacity) { \
array = _memreserve_dynarray(array, 1L << upper_2_power_64(_ahdr->size + 1)); \
_ahdr = array_header(array); \
} \
array[_ahdr->size] = (element); \
++_ahdr->size; \
} while (0)
/// inserts element at given index element is evaluated once.
/// Note: `element` HAS to be of same type as the array during initialization. The expression has to be of the same type.
/// That means calling `array_insert(arr, 0, 5)`, where array is of type `long`, WILL lead to errors. because typeof(0) is
/// int, and it will put it in an `int` variable and copy 8 bytes from there, which will be some random stack garbage.
#define array_insert(array, element, idx) \
do { \
typeof(element) __tmp_el_var = (element); \
array = _insert_to_index_dynarray(array, &__tmp_el_var, sizeof(__tmp_el_var), idx); \
} while(0)
/// removes last element from the array
#define array_pop(array) --array_header(array)->size
/// reserve length elements so that subsequent (length - current_size) pushes require no reallocation
#define array_reserve(array, length) if (typeof(array) __tmp; (__tmp = _memreserve_dynarray(array, length)) != NULL) array = __tmp
/// change size of an array. the capacity is set to lowest power of 2 that is greater than length
#define array_resize(array, length) array = _force_resize_dynarray(array, length);
/// set capacity to minimum possible value
#define array_shrink(array) array = _memshrink_array(array)
/// bound-checks and returns a pointer to that element. on error returns NULL
#define array_at(array, idx) (idx < array_size(array) ? (void*)((byte*)array + idx*array_element_size(array)) : NULL)
/// sorts the array using compare_func for comparison
#define array_qsort(array, compare_func) qsort(array, array_size(array), array_element_size(array), compare_func)
/// sorts the array using pre-defined compariton functions for signed integers based on size (1, 2, 4, 8)
#define array_qsort_integral(array) array_qsort(array, __qsort_cmps[array_element_size(array)])
/// Placed here because is not a macro. compares 2 arrays and returns the same way as `strcmp`
int array_compare(const void *const a1, const void *const a2, qsort_cmp_t comp);
/// Exact copy of the array. you have to free the pointer as well.
void* array_copy(void* old);
/// Search for element `element` in array `array` using comparator `cmp`.
/// Returns bool. Assumes that the array is sorted.
char array_binary_search(void* array, void* element, qsort_cmp_t cmp);
/* ----------------------------------------------------------------- */
/* ----------------------LINKED LIST HEADER------------------------- */
/* ----------------------------------------------------------------- */
struct __linked_list_meta {
size_t element_size;
size_t assumed_size;
};
struct linked_list_node {
void* data;
struct linked_list_node *next;
};
/// holds meta about list and first element. you should not use it's members.
struct linked_list {
struct __linked_list_meta meta;
struct linked_list_node *first;
struct linked_list_node *last;
};
/// creates an empty linked list. `memb_size` should usually be sizeof(element type),
/// O(1)
struct linked_list ll_create(size_t memb_size);
/// Created linked list with elements as in buf. copies the memory with `memcpy`.
/// Assumes buffer size is >= buff_len * memb_size
/// O(buff_len)
struct linked_list ll_create_from_buffer(size_t memb_size, const void* buf, size_t buff_len);
/// iteratively frees a linked list
/// O(n)
void ll_free(struct linked_list* list);
/// searches an `element` in the list using `cmp`. returst whether it found it or not.
/// O(n)
char ll_search(const struct linked_list* list, const void* element, qsort_cmp_t cmp);
/// get a pointer to node at index i. DO NOT FREE THIS POINTER. returns NULL if
/// list is not long enough.
/// O(i)
struct linked_list_node* ll_at(const struct linked_list* list, const size_t i);
/// truncate a list starting from index i. if i==0, frees the list and you have to initialize a new one.
/// O(n)
void ll_truncate(struct linked_list* list, const size_t i);
/// returns a size of a list as stored in metadata.
/// Should be same as `ll_definite_size` unless user modifies nodes directly. Which you should not do.
/// O(1)
size_t ll_probably_size(const struct linked_list* list);
/// Counts elements in linked list, updating size in metadata if necessary.
/// if `ll_probably_size` is greater than `ll_definite_size`, there was a memory leak.
// if it is equal, everything is fine
/// else, the creator of the library is dumb.
/// O(n)
size_t ll_definite_size(struct linked_list *list);
/// creates a new node at the end of list and copies memory from element to new node.
/// The amount of memory copied is `memb_size` that was passed in `ll_create*` function.
/// If list->last->next == NULL, O(1) (which is guaranteed if you don't touch the nodes).
void ll_append(struct linked_list *list, const void* restrict element);
/// same as `ll_append`, except it does not perform memcpy and directly assigns pointer to node.
/// the only reqirement to this function is that `pointer` must be freeable with `free` function.
/// ONLY USE THIS IF YOU ARE 100% SURE THAT POINTER CAME UNMODIFIED FROM MALLOC,
/// OTHERWISE THE `ll_free` FUNCTION MAY DOUBLE-FREE, LEAK MEMORY AND OTHER TERRIBLE THINGS.
/// Complexity same as `ll_append`, usually O(1)
void ll_append_mallocated_pointer(struct linked_list *list, void* pointer);
/// inserts an element to the front of the list.
/// O(1)
void ll_insert_front(struct linked_list *list, const void* restrict element);
/// This to `ll_insert_front` is same as `ll_append_mallocated_pointer` to `ll_append`.
/// Copies `pointer` into newly created node. Same security considerations
/// as in `ll_append_mallocated_pointer`.
/// O(1)
void ll_insert_front_mallocated_pointer(struct linked_list *list, void* pointer);
/// inserts an element at index I if it exists. Returns 1 if insertion was successfull,
/// 0 if list is not long enough.
/// O(i)
char ll_insert_at(struct linked_list *list, const void* restrict element, size_t i);
/// copies a pointer directly into newly created node. see `ll_insert_at`
/// and `ll_append_mallocated_pointer` for more details.
/// O(i)
char ll_insert_at_mallocated_pointer(struct linked_list *list, void* pointer, size_t i);
/// removes the element from the front, or, if the list is empty, does nothing
/// O(1)
void ll_remove_front(struct linked_list* list);
/// removes the element from the back, or, if the list is empty, does nothing
/// O(n)
void ll_remove_back(struct linked_list* list);
/// Removes element at index i. if there is no such index, does nothing.
/// O(n)
char ll_remove_at(struct linked_list *list, size_t i);
/// splits a linked list into two, the second one starting from element at index `i`.
/// List that you passed stays valid, only it's size changes. return value is the second list.
/// O(n)
struct linked_list ll_split_at(struct linked_list *list, size_t i);
/// merges 2 lists into one, with elements of second list appearing at the end of first list
/// invalidates second list, leaving only first one valid.
/// O(1)
void ll_merge(struct linked_list* fst, struct linked_list* snd);
/// splits linked list into N linked lists at indexes given in varargs.
/// INDEXES MUST BE IN ASCENDING ORGER, OR ELSE ARE IGNORED.
/// Returns array (as defined in array implementation above).
/// O(n)
struct linked_list* ll_split_n(size_t splits, size_t i, ...);
/// merges N linked lists into one.
/// Leaves first list valid (being), all other ones are invalidated.
/// Lists are appended in the order they are given in varargs.
/// O(`merges`)
void ll_merge_n(size_t merges, struct linked_list *l, ...);
/// creates array (not an array of pointers, array of elements! it uses memcpy to copy elements)
/// Leaves linked list unchanged
void* ll_to_array(const struct linked_list* list);
/// Same as `ll_to_array`, except it acceps function used for copying. Use if you think
/// that your data should not be `memcpy`'d
void* ll_to_array_custom_cpy(const struct linked_list* list, memcpy_t cpy);
/// literally does:
/// 1. linked list to array
/// 2. sort the array using qsort
/// 3. array to linked list
/// since linked list in not random-access, i think this is literally more efficient.
/// Also, I am not in a mood to write sorting algorithms today
void ll_sort(struct linked_list *list, qsort_cmp_t cmp);
/// Deallocates a node and returns next one;
struct linked_list_node* ll_free_node(struct linked_list_node* node);
/* ------------------------------------------------------------------------- */
/* ------From now on, the rest of the header is implementation details------ */
/* -------------------The API and documentation end here-------------------- */
/* ------------------------------------------------------------------------- */
// for internal use
enum _dynarray_header_idx {
_dah_idx_member_size = 0,
_dah_idx_capacity = 1,
_dah_idx_size = 2,
};
// for structurization
struct _dynarray_header {
size_t memb_size;
size_t capacity;
size_t size;
};
void *_alloc_dynarray(size_t el_size, size_t len);
void *_alloc_dynarray_buffer(size_t el_size, size_t alen, void *buffer, size_t blen);
/// Forcibly change size AND capacity of the array to new value
/// ignores the power-of-2-capacity rule
void *_force_resize_dynarray(void *dynarray, size_t new_size);
void *_memreserve_dynarray(void *dynarray, size_t reserved);
void *_memshrink_array(void *dynarray);
void *_insert_to_index_dynarray(void *const dynarray, const void *const element, size_t el_size, size_t index);
// uncomment in dev mode so that LSP highlights the code
#define CONTAINER_IMPLEMENTATION
#ifdef CONTAINER_IMPLEMENTATION
/* ----------------------------------------------------------------- */
/* ---------------------UTILITY IMPLEMENTATION---------------------- */
/* ----------------------------------------------------------------- */
#ifndef __GNUC__
unsigned long __bit_scan_32(int32_t number) {
#ifdef _MSC_VER
unsigned long index;
if (_BitScanReverse(&index, number)) {
return index + 1;
} else {
return 1;
}
#else // _MSC_VER
unsigned long count;
for (count = 0; number; number >>= 1) { ++count; }
return count;
#endif // _MSC_VER
}
unsigned long __bit_scan_64(int64_t number) {
#ifdef _MSC_VER
unsigned long index;
if (_BitScanReverse64(&index, number)) {
return index + 1;
} else {
return 1;
}
#else // _MSC_VER
unsigned long count;
for (count = 0; number; number >>= 1) { ++count; }
return count;
#endif // _MSC_VER
}
#endif // __GNUC__
_CONTAINER_STATIC int __default_char_cmp(const void* a, const void* b) {
char x = *(char*)a, y = *(char*)b;
if (x < y) return -1;
if (x > y) return 1;
return 0;
}
_CONTAINER_STATIC int __default_short_cmp(const void* a, const void* b) {
short x = *(short*)a, y = *(short*)b;
if (x < y) return -1;
if (x > y) return 1;
return 0;
}
_CONTAINER_STATIC int __default_int_cmp(const void* a, const void* b) {
int x = *(int*)a, y = *(int*)b;
if (x < y) return -1;
if (x > y) return 1;
return 0;
}
_CONTAINER_STATIC int __default_long_long_cmp(const void* a, const void* b) {
long long x = *(long long*)a, y = *(long long*)b;
if (x < y) return -1;
if (x > y) return 1;
return 0;
}
_CONTAINER_STATIC int __default_long_cmp(const void* a, const void* b) {
long x = *(long*)a, y = *(long*)b;
if (x < y) return -1;
if (x > y) return 1;
return 0;
}
#ifdef __GNUC__
// cope
#pragma GCC diagnostic ignored "-Woverride-init" // Is is meant to override it on different platforms
const qsort_cmp_t __qsort_cmps[64] = {
[sizeof(char)] = __default_char_cmp,
[sizeof(short)] = __default_short_cmp,
[sizeof(int)] = __default_int_cmp,
[sizeof(long)] = __default_long_cmp,
[sizeof(long long)] = __default_long_long_cmp,
[63] = 0,
};
#pragma GCC diagnostic warning "-Woverride-init"
#else // not __GNUC__
const qsort_cmp_t __qsort_cmps[64] = {
0,
__default_char_cmp, __default_short_cmp, 0, __default_int_cmp,
0, 0, 0, __default_long_long_cmp,
};
#endif // __GNUC__
/* ----------------------------------------------------------------- */
/* ----------------------ARRAY IMPLEMENTATION----------------------- */
/* ----------------------------------------------------------------- */
void *_alloc_dynarray(size_t el_size, size_t len)
{
byte *data = (byte *)malloc(el_size * len + DYNARRAY_HEADER_SIZE);
if (data == NULL) return NULL;
struct _dynarray_header *header = (struct _dynarray_header *)data;
header->size = len;
header->capacity = len;
header->memb_size = el_size;
return data + DYNARRAY_HEADER_SIZE;
}
/// assumes that element size in the buffer is the same as element size in the array
void *_alloc_dynarray_buffer(size_t el_size, size_t alen, void *buffer, size_t blen) {
void *array = _alloc_dynarray(el_size, alen);
memcpy(array, buffer, el_size * blen);
return array;
}
void *_memreserve_dynarray(void * const dynarray, size_t reserved)
{
struct _dynarray_header *hdr = array_header(dynarray);
if (hdr->capacity >= reserved) return dynarray;
byte *data = (byte *)hdr;
data = (byte *)realloc(data, reserved * hdr->memb_size + DYNARRAY_HEADER_SIZE);
if (data == NULL) return NULL;
hdr = (struct _dynarray_header *)data;
hdr->capacity = reserved;
return data + DYNARRAY_HEADER_SIZE;
}
void *_memshrink_array(void * const dynarray)
{
struct _dynarray_header *hdr = array_header(dynarray);
byte *data = (byte *)hdr;
data = (byte*) realloc(data, hdr->size * hdr->memb_size + DYNARRAY_HEADER_SIZE);
if (data == NULL) return NULL;
hdr = (struct _dynarray_header *) data;
hdr->capacity = hdr->size;
return data + DYNARRAY_HEADER_SIZE;
}
void *_force_resize_dynarray(void * const dynarray, size_t new_size)
{
struct _dynarray_header *hdr = array_header(dynarray);
if (new_size < hdr->size) {
hdr->size = new_size;
hdr->capacity = 1 << upper_2_power_64(new_size);
byte *arr = (byte*) realloc(hdr, hdr->memb_size * hdr->capacity + DYNARRAY_HEADER_SIZE);
if (arr == NULL) return NULL;
return arr + DYNARRAY_HEADER_SIZE;
} else {
void* arr;
if ((arr = _memreserve_dynarray(dynarray, 1 << upper_2_power_64(new_size))) == NULL) return NULL;
hdr = array_header(arr);
hdr->size = new_size;
return arr;
}
}
void *_insert_to_index_dynarray(void *const dynarray, const void *const element, size_t el_size, size_t index) {
struct _dynarray_header* hdr = array_header(dynarray);
byte* array = (byte*) _memreserve_dynarray(dynarray, 1 << upper_2_power_64(hdr->size + 1));
hdr = array_header(array);
++hdr->size;
memmove(array + hdr->memb_size * (index+1), array + hdr->memb_size * (index), hdr->memb_size * (hdr->size - 1 - index));
if (el_size != hdr->memb_size) { /* TODO: warning? */ }
memcpy(array + hdr->memb_size * index, element, el_size);
return array;
}
int array_compare(const void *const a1, const void *const a2, qsort_cmp_t comp) {
struct _dynarray_header *hdr = array_header(a1);
struct _dynarray_header *hdr2 = array_header(a2);
const size_t s1 = hdr->size, s2 = hdr->size;
const size_t elsize = hdr->memb_size;
size_t i;
for (i = 0; i < s1 && i < s2; ++i) {
int result = comp((byte*) a1 + elsize*i, (byte*) a2 + elsize*i);
if (result) return result;
}
if (s1 == s2) return 0;
if (i == s1) return -1;
if (i == s2) return 1;
TODO;
__builtin_unreachable();
}
void* array_copy(void* old) {
return _alloc_dynarray_buffer(array_element_size(old), array_size(old), old, array_size(old) * array_element_size(old));
}
char array_binary_search(void* array, void* element, qsort_cmp_t cmp) {
ssize_t index1 = -1,
index2 = array_size(array);
if (index2 == 0) return 0;
while (1) {
ssize_t index3 = (index1+index2)/2;
if (index3 == index2 || index3 == index1 || index1 == index2) return 0;
int result = cmp(element, (byte*)array + array_element_size(array) * index3);
if (result == 0) return 1;
if (result < 0) index2 = index3;
else if (result > 0) index1 = index3;
}
}
/* ----------------------------------------------------------------- */
/* ------------------LINKED LIST IMPLEMENTATION--------------------- */
/* ----------------------------------------------------------------- */
struct linked_list ll_create(size_t memb_size) {
struct __linked_list_meta meta = {
.assumed_size = 0,
.element_size = memb_size,
};
struct linked_list ret = {
.meta = meta,
.first = NULL,
.last = NULL,
};
return ret;
}
struct linked_list ll_create_from_buffer(size_t memb_size, const void* buf, size_t buff_len) {
struct __linked_list_meta meta = {
.assumed_size = buff_len,
.element_size = memb_size,
};
struct linked_list_node *current_node = calloc(1, sizeof(struct linked_list_node));
struct linked_list ret = { .meta = meta, .first = current_node };
for (size_t i = 0; i < buff_len; ++i) {
current_node->data = malloc(memb_size);
memcpy(current_node->data, (const byte *)buf + memb_size * i, memb_size);
if (i != buff_len - 1) {
current_node->next = calloc(1, sizeof(struct linked_list_node));
current_node = current_node->next;
}
}
ret.last = current_node;
return ret;
}
/// An older, more ugly implementation
void ll_free_(struct linked_list* list) {
struct linked_list_node *to_dealloc = NULL;
for (struct linked_list_node *current = list->first; current != NULL; current = current->next) {
free(to_dealloc);
free(current->data);
to_dealloc = current;
}
free(to_dealloc);
memset(list, 0, sizeof(*list));
}
void ll_free(struct linked_list* list) {
struct linked_list_node* node = list->first;
while ((node = ll_free_node(node)) != NULL) {}
memset(list, 0, sizeof(*list));
}
char ll_search(const struct linked_list* list, const void* element, qsort_cmp_t cmp) {
for (struct linked_list_node *current = list->first; current != NULL; current = current->next) {
if (cmp(element, current->data) == 0) return 1;
}
return 0;
}
struct linked_list_node* ll_at(const struct linked_list* list, const size_t i) {
size_t j = 0;
if (i == list->meta.assumed_size - 1) return list->last;
if (i >= list->meta.assumed_size) return NULL;
for (struct linked_list_node *current = list->first; current != NULL; current = current->next) {
if (i == j) return current;
++j;
}
return NULL;
}
void ll_truncate(struct linked_list* list, const size_t i) {
if (i == 0) {
ll_free(list);
return;
}
struct linked_list_node *start = ll_at(list, i-1);
if (start == NULL) return;
struct linked_list freeable = {
.meta = {list->meta.element_size, list->meta.assumed_size - i},
.first = start->next,
};
ll_free(&freeable);
list->meta.assumed_size = i;
start->next = NULL;
list->last = start;
}
size_t ll_probably_size(const struct linked_list* list) {
return list->meta.assumed_size;
}
size_t ll_definite_size(struct linked_list *list) {
int i = 0;
for (struct linked_list_node *current = list->first; current != NULL; current = current->next)
++i;
list->meta.assumed_size = i;
return i;
}
void ll_append(struct linked_list *list, const void* restrict element) {
struct linked_list_node *new = calloc(1, sizeof(struct linked_list_node));
new->data = malloc(list->meta.element_size);
memcpy(new->data, element, list->meta.element_size);
if (list->last == NULL) list->first = list->last = new;
else list->last->next = new;
++list->meta.assumed_size;
list->last = new;
}
void ll_append_mallocated_pointer(struct linked_list *list, void* pointer) {
struct linked_list_node *new = calloc(1, sizeof(struct linked_list_node));
new->data = pointer;
if (list->last == NULL) list->first = list->last = new;
else list->last->next = new;
++list->meta.assumed_size;
list->last = new;
}
void ll_insert_front(struct linked_list *list, const void* restrict element) {
struct linked_list_node *new = calloc(1, sizeof(struct linked_list_node));
new->data = malloc(list->meta.element_size);
memcpy(new->data, element, list->meta.element_size);
if (list->first == NULL) list->first = list->last = new;
else {
new->next = list->first;
list->first = new;
}
++list->meta.assumed_size;
}
void ll_insert_front_mallocated_pointer(struct linked_list *list, void* pointer) {
struct linked_list_node *new = calloc(1, sizeof(struct linked_list_node));
new->data = pointer;
if (list->first == NULL) list->first = list->last = new;
else {
new->next = list->first;
list->first = new;
}
++list->meta.assumed_size;
}
char ll_insert_at(struct linked_list *list, const void* restrict element, size_t i) {
if (i == 0) {
ll_insert_front(list, element);
return 1;
}
if (i == list->meta.assumed_size) {
ll_append(list, element);
return 1;
}
if (list->last == NULL) return 0;
struct linked_list_node* delim;
if ( (delim = ll_at(list, i-1)) == NULL ) return 0;
struct linked_list_node* new = malloc(sizeof(struct linked_list_node));
new->next = delim->next;
delim->next = new;
new->data = malloc(list->meta.element_size);
memcpy(new->data, element, list->meta.element_size);
++list->meta.assumed_size;
return 1;
}
char ll_insert_at_mallocated_pointer(struct linked_list *list, void* pointer, size_t i) {
if (i == 0) {
ll_insert_front_mallocated_pointer(list, pointer);
return 1;
}
if (i == list->meta.assumed_size) {
ll_append_mallocated_pointer(list, pointer);
return 1;
}
if (list->last == NULL) return 0;
struct linked_list_node* delim;
if ((delim = ll_at(list, i-1)) == NULL) return 0;
struct linked_list_node* new = malloc(sizeof(struct linked_list_node));
new->next = delim->next;
delim->next = new;
new->data = pointer;
++list->meta.assumed_size;
return 1;
}
void ll_remove_front(struct linked_list* list) {
if (list->first == NULL) return;
list->first = ll_free_node(list->first);
--list->meta.assumed_size;
if (list->meta.assumed_size <= 1) list->last = list->first;
}
void ll_remove_back(struct linked_list* list) {
if (list->meta.assumed_size == 0) return;
if (list->meta.assumed_size == 1) {
list->first = ll_free_node(list->first);
goto common;
}
if (list->meta.assumed_size == 2) {
list->first->next = ll_free_node(list->last);
list->last = list->first;
goto common;
}
struct linked_list_node* prelast;
if ((prelast = ll_at(list, list->meta.assumed_size-1-1)) == NULL) return;
prelast->next = ll_free_node(list->last);
list->last = prelast;
common:
--list->meta.assumed_size;
}
char ll_remove_at(struct linked_list *list, size_t i) {
if (list->first == NULL) return 0;
if (i == 0) {
ll_remove_front(list);
return 1;
}
if (i == list->meta.assumed_size - 1) {
ll_remove_back(list);
return 1;
}
struct linked_list_node *before_removed;
if ((before_removed = ll_at(list, i-1)) == NULL) return 0;
before_removed->next = ll_free_node(before_removed->next);
--list->meta.assumed_size;
return 1;
}
struct linked_list ll_split_at(struct linked_list *list, size_t i);
void ll_merge(struct linked_list* fst, struct linked_list* snd);
struct linked_list* ll_split_n(size_t splits, size_t i, ...);
void ll_merge_n(size_t merges, struct linked_list *l, ...);
void* ll_to_array(const struct linked_list* list);
void* ll_to_array_custom_cpy(const struct linked_list* list, memcpy_t cpy);
void ll_sort(struct linked_list *list, qsort_cmp_t cmp);
struct linked_list_node* ll_free_node(struct linked_list_node* node) {
if (node == NULL) return NULL;
struct linked_list_node* ret = node->next;
free(node->data);
free(node);
return ret;
}
#endif // CONTAINER_IMPLEMENTATION
#endif // JUSTANOTHERCATGIRL_HEADERS_CONTAINER
|