aboutsummaryrefslogtreecommitdiffstats
path: root/include/container.h
blob: 3370be38d47cd91c68eb204f2639d8ba6f148a32 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
#ifndef JUSTANOTHERCATGIRL_HEADERS_CONTAINER
#define JUSTANOTHERCATGIRL_HEADERS_CONTAINER

#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdarg.h>

/* ----------------------------------------------------------------- */
/* -----------------UTILITY HEADER---------------------------------- */
/* ----------------------------------------------------------------- */
#define stringify(val) _stringify_helper(val)
#define _stringify_helper(val) #val
#define string_concat_separator(first, ...) stringify(first) ";" string_concat_separator(__VA_ARGS__)

#define struct_member_size(type, member) sizeof(( (type*)0 )->member)
typedef unsigned char byte;

/// Find closest powers of 2
#ifdef __GNUC__
	#define upper_2_power_32(number) (32 - __builtin_clz(number))
	#define upper_2_power_64(number) (64 - __builtin_clzl(number))
#else
	#include <intrin.h>
	#include <stdint.h>
	#define upper_2_power_32(number) __bit_scan_32(number)
	#define upper_2_power_64(number) __bit_scan_64(number)
	unsigned long __bit_scan_32(int32_t number);
	unsigned long __bit_scan_64(int64_t number);
#endif

/// define FALLTHROUGH macro
#if defined(__clang__) || defined(__GNUC__)
#define FALLTHROUGH __attribute__((fallthrough))
#elif defined(_MSC_VER)
#define FALLTHROUGH __fallthrough()
#else
#define FALLTHROUGH ((void)0)
#endif

/// define TODO macro
#define TODO (void)(*(volatile char*)0)

/// typedefs for array qsort
typedef int(*qsort_cmp_t)(const void*, const void*);
#define get_qsort_cmp(type) __qsort_cmps[sizeof(type)]
extern const qsort_cmp_t __qsort_cmps[64];

typedef void*(*memcpy_t)(void* restrict, const void*, size_t);

/// default qsort_cmp_t functions to be used with integral types.
#ifdef CONTAINER_EXPOSE_HELPERS
	#define _CONTAINER_STATIC 
	int __default_char_cmp(const void* a, const void* b);
	int __default_short_cmp(const void* a, const void* b);
	int __default_int_cmp(const void* a, const void* b);
	int __default_long_cmp(const void* a, const void* b);
	int __default_long_long_cmp(const void* a, const void* b);
#else 
	#define _CONTAINER_STATIC static
#endif // CONTAINER_EXPOSE_HELPERS


/* ----------------------------------------------------------------- */
/* -------------------------ARRAY HEADER---------------------------- */
/* ----------------------------------------------------------------- */
/* A dynamic array implementation 
 * As this is a header-only library, you have to define `CONTAINER_IMPLEMENTATION` macro the first time you include this
 * header. This implementation uses the idea of storing metadata to the left of the array data, so that the user can
 * think of it (and use it) as normal array. Most of the API functions are defined as macros that either do some work
 * or call the implementation. They are not all-caps because they are more like functions.
 * As source is the best documentation, you should check yourself what is macro and what is not. generally, everything
 * prefixed with `array_` is a macro. Some of the macros evaluate their arguments more than once (the multiline ones), 
 * so as a rule of thumb, you should only ever pass evaluated identifiers or expressions with no side-effects (like `ptr+2`)
 * to all of the macros in this library.
 */

/// size of the array header. Should not be used directly, unless you know what you are doing
#define DYNARRAY_HEADER_SIZE sizeof(struct _dynarray_header)

/// allocate new array of <size> elements of type <type>.
#define array_new(type, size)	  _alloc_dynarray(sizeof(type), size)
/// get amount of elements in the array
#define array_size(array)	  (((struct _dynarray_header *)((byte *)(array)-DYNARRAY_HEADER_SIZE))->size)
/// get array capacity (it's maximum size until reallocation)
#define array_capacity(array)	  (((struct _dynarray_header *)((byte *)(array)-DYNARRAY_HEADER_SIZE))->capacity)
/// get element size of an array (same as sizeof(array[0]), except not constant-expression)
#define array_element_size(array) (((struct _dynarray_header *)((byte *)(array)-DYNARRAY_HEADER_SIZE))->memb_size)
/// free a dynamic array
#define array_free(array)	  free(array_header(array))
/// get dynamic array header. should not be used directly, unless you know what you are doing.
#define array_header(array)	  ((struct _dynarray_header *)(((byte *)array) - DYNARRAY_HEADER_SIZE))
/// allocate new array of <size> element of type <type> and initialize it from buffer
#define array_new_buffer_copy(type, buffer, size) _alloc_dynarray_buffer(sizeof(type), size, buffer, sizeof(type) * size)
/// add one new element to the end of the array. May invalidate previous pointer if size+1 > capacity.
#define array_push(array, element)									\
	do {												\
		struct _dynarray_header *_ahdr = array_header(array);					\
		if (_ahdr->size + 1 > _ahdr->capacity) {						\
			array = _memreserve_dynarray(array, 1L << upper_2_power_64(_ahdr->size + 1));	\
			_ahdr = array_header(array);							\
		}											\
		array[_ahdr->size] = (element);								\
		++_ahdr->size;										\
	} while (0)
/// inserts element at given index element is evaluated once.
/// Note: `element` HAS to be of same type as the array during initialization. The expression has to be of the same type.
/// That means calling `array_insert(arr, 0, 5)`, where array is of type `long`, WILL lead to errors. because typeof(0) is
/// int, and it will put it in an `int` variable and copy 8 bytes from there, which will be some random stack garbage. 
#define array_insert(array, element, idx)								\
	do {												\
		typeof(element) __tmp_el_var = (element);						\
		array = _insert_to_index_dynarray(array, &__tmp_el_var, sizeof(__tmp_el_var), idx);	\
	} while(0)
/// removes last element from the array
#define array_pop(array) --array_header(array)->size
/// reserve length elements so that subsequent (length - current_size) pushes require no reallocation
#define array_reserve(array, length) 	do { array = _memreserve_dynarray(array, length); } while (0)
/// change size of an array. the capacity is set to lowest power of 2 that is greater than length
#define array_resize(array, length)	do { array = _force_resize_dynarray(array, length); } while(0)
/// set capacity to minimum possible value
#define array_shrink(array)	do { array = _memshrink_array(array); } while(0)
/// bound-checks and returns a pointer to that element. on error returns NULL 
#define array_at(array, idx)	(idx < array_size(array) ? (void*)((byte*)array + idx*array_element_size(array)) : NULL)
/// sorts the array using compare_func for comparison
#define array_qsort(array, compare_func) qsort(array, array_size(array), array_element_size(array), compare_func)
/// sorts the array using pre-defined comparison functions for signed integers based on size (1, 2, 4, 8)
#define array_qsort_integral(array) array_qsort(array, __qsort_cmps[array_element_size(array)])
/// Placed here because is not a macro. compares 2 arrays and returns the same way as `strcmp`
int array_compare(const void *const a1, const void *const a2, qsort_cmp_t comp);
/// Exact copy of the array. you have to free the pointer as well.
void* array_copy(void* old);
/// Search for element `element` in array `array` using comparator `cmp`. 
/// Returns bool. Assumes that the array is sorted.
char array_binary_search(void* array, void* element, qsort_cmp_t cmp);
struct linked_list array_to_ll(void* array);

/* ----------------------------------------------------------------- */
/* ----------------------LINKED LIST HEADER------------------------- */
/* ----------------------------------------------------------------- */

typedef void(*free_t)(void*);
struct __linked_list_meta {
	size_t element_size;
	size_t assumed_size;
	free_t free_function;
};
struct linked_list_node {
	void* data;
	struct linked_list_node *next;
};
/// holds meta about list and first element. you should not use it's members.
struct linked_list {
	struct __linked_list_meta meta;
	struct linked_list_node *first;
	struct linked_list_node *last;
};

/// creates an empty linked list. `memb_size` should usually be sizeof(element type), 
/// O(1)
struct linked_list ll_create(size_t memb_size);
/// Created linked list with elements as in buf. Copies the memory with `memcpy`. 
/// Assumes buffer size is >= buff_len * memb_size
/// O(buff_len)
struct linked_list ll_create_from_buffer(size_t memb_size, const void* buf, size_t buff_len);
/// iteratively frees a linked list
/// O(n)
void ll_free(struct linked_list* list);
/// searches an `element` in the list using `cmp`. Returns whether it found it or not.
/// O(n)
char ll_search(const struct linked_list* list, const void* element, qsort_cmp_t cmp);
/// searches for `element` in the list using `cmp`. Returns the node if it was found, else returns NULL
/// O(n)
struct linked_list_node* ll_find(const struct linked_list* list, const void* element, qsort_cmp_t cmp);
/// get a pointer to node at index i. DO NOT FREE THIS POINTER. Returns NULL if
/// list is not long enough.
/// O(i)
struct linked_list_node* ll_at(const struct linked_list* list, const size_t i);
/// truncate a list starting from index i. if i==0, frees the list and you have to initialize a new one.
/// O(n)
void ll_truncate(struct linked_list* list, const size_t i);
/// returns a size of a list as stored in metadata. 
/// Should be same as `ll_definite_size` unless user modifies nodes directly. Which you should not do.
/// O(1)
size_t ll_probably_size(const struct linked_list* list);
/// Counts elements in linked list, updating size in metadata if necessary.
/// if `ll_probably_size` is greater than `ll_definite_size`, there was a memory leak.
// if it is equal, everything is fine
/// else, the creator of the library is dumb.
/// O(n)
size_t ll_definite_size(struct linked_list *list);
/// creates a new node at the end of list and copies memory from element to new node.
/// The amount of memory copied is `memb_size` that was passed in `ll_create*` function.
/// If list->last->next == NULL, O(1) (which is guaranteed if you don't touch the nodes).
void ll_append(struct linked_list *list, const void* restrict element);
/// same as `ll_append`, except it does not perform memcpy and directly assigns pointer to node.
/// the only reqirement to this function is that `pointer` must be freeable with `free` function.
/// ONLY USE THIS IF YOU ARE 100% SURE THAT POINTER CAME UNMODIFIED FROM MALLOC, 
/// OTHERWISE THE `ll_free` FUNCTION MAY DOUBLE-FREE, LEAK MEMORY AND OTHER TERRIBLE THINGS.
/// Complexity same as `ll_append`, usually O(1)
void ll_append_mallocated_pointer(struct linked_list *list, void* pointer);
/// inserts an element to the front of the list.
/// O(1)
void ll_insert_front(struct linked_list *list, const void* restrict element);
/// This to `ll_insert_front` is same as `ll_append_mallocated_pointer` to `ll_append`.
/// Copies `pointer` into newly created node. Same security considerations 
/// as in `ll_append_mallocated_pointer`.
/// O(1)
void ll_insert_front_mallocated_pointer(struct linked_list *list, void* pointer);
/// inserts an element at index I if it exists. Returns 1 if insertion was successfull,
/// 0 if list is not long enough.
/// O(i)
char ll_insert_at(struct linked_list *list, const void* restrict element, size_t i);
/// copies a pointer directly into newly created node. see `ll_insert_at` 
/// and `ll_append_mallocated_pointer` for more details.
/// O(i)
char ll_insert_at_mallocated_pointer(struct linked_list *list, void* pointer, size_t i);
/// removes the element from the front, or, if the list is empty, does nothing 
/// O(1)
void ll_remove_front(struct linked_list* list);
/// removes the element from the back, or, if the list is empty, does nothing
/// O(n)
void ll_remove_back(struct linked_list* list);
/// Removes element at index i. if there is no such index, does nothing.
/// O(n)
char ll_remove_at(struct linked_list *list, size_t i);
/// Removes ALL occurrences of element "elem" in a list
/// O(n)
void ll_remove_all(struct linked_list* list, const void* elem, qsort_cmp_t cmp);
/// splits a linked list into two, the second one starting from element at index `i`.
/// List that you passed stays valid, only it's size changes. return value is the second list.
/// O(n)
struct linked_list ll_split_at(struct linked_list *list, size_t i);
/// merges 2 lists into one, with elements of second list appearing at the end of first list
/// invalidates second list, leaving only first one valid.
/// O(1)
void ll_merge(struct linked_list* fst, struct linked_list* snd);
/// splits linked list into N linked lists at indexes given in varargs.
/// varargs type: size_t
/// INDEXES MUST BE IN ASCENDING ORDER, OR ELSE ARE IGNORED.
/// Returns array (as defined in array implementation above).
/// O(n)
struct linked_list* ll_split_n(struct linked_list* list, size_t splits, ...);
/// merges N linked lists into one.
/// varargs type: struct linked_list*
/// Leaves `result` list valid, all other ones are invalidated. 
/// Lists are appended in the order they are given in varargs.
/// O(`merges`)
void ll_merge_n(struct linked_list* result, size_t merges, ...);
/// creates array (not an array of pointers, array of elements! it uses memcpy to copy elements) 
/// Leaves linked list unchanged
void* ll_to_array(const struct linked_list* list);
/// Same as `ll_to_array`, except it accepts function used for copying. Use if you think
/// that your data should not be `memcpy`'d
void* ll_to_array_custom_cpy(const struct linked_list* list, memcpy_t cpy);
/// literally does: 
/// 1. linked list to array
/// 2. sort the array using qsort
/// 3. array to linked list
/// since linked list in not random-access, i think this is literally more efficient. 
/// Also, I am not in a mood to write sorting algorithms today
void ll_sort(struct linked_list *list, qsort_cmp_t cmp);
/// Deallocates a node and returns next one;
struct linked_list_node* ll_free_node(struct linked_list* list, struct linked_list_node* node) ;
/// Sets a custom free function for the data of the list
void ll_set_free(struct linked_list* list, free_t new_free);
/// Creates a deep copy of the list, meaning that it must be free'd as any other list
/// Uses `cpy` function to copy data to new location. If NULL, memcpy is used.
struct linked_list ll_deep_copy(const struct linked_list* list, memcpy_t cpy);

/* ----------------------------------------------------------------- */
/* ------------------------HASH MAP HEADER-------------------------- */
/* ----------------------------------------------------------------- */

#define HMAP_BUCKET_MAX_SIZE 8
#define HMAP_DEFAULT_BUCKETS 32
/// should return `0` only if first argument is not equal to second,
/// otherwise should return `1` or any other positive integer
/// OPERATES ON `struct hmap_pair*` !!!!!!!!!! NOT ON KEYS!
typedef int(*hmap_equal_fn)(const void*, const void*);
typedef size_t(*hmap_hash_fn)(const void*);
struct hmap_pair {
	void* key;
	void* val;
};
struct hash_map {
	struct linked_list* buckets;
	hmap_equal_fn eq;
	hmap_hash_fn hash;
	size_t key_size;
	size_t val_size;
};
enum hmapi_cmp_res {
	hmap_lt = -1,
	hmap_eq = 0,
	hmap_gt = 1,
	hmap_no = 0x80000000,
};
struct hash_map_iter {
	const struct hash_map* map;
	size_t bucket_pos;
	struct linked_list_node* current_node;
};
struct hash_map hmap_create(const size_t key_size, const size_t val_size, hmap_equal_fn eq, hmap_hash_fn hash);
struct hash_map hmap_create_from_buffer(size_t key_size, size_t val_size, hmap_equal_fn eq, hmap_hash_fn hash, struct hmap_pair* buf, size_t buf_len);
void hmap_free(struct hash_map* map);
void hmap_insert(struct hash_map* map, struct hmap_pair element);
/// pair is a pointer
#define hmap_insert_pair(map, pair) hmap_insert_range(map, pair, 1);
void hmap_insert_range(struct hash_map* map, struct hmap_pair* elements, size_t elements_len);
void* hmap_get(struct hash_map* map, void* key);
void hmap_remove(struct hash_map* map, void* key);
/// double the size of a hash map
void hmap_rehash(struct hash_map* map);

/// initialize iterator `iter`.
void hmapi_begin(const struct hash_map* map, struct hash_map_iter* iter);
/// set iter to next element. If there is no next element, `hash_map_iter.current_node` is set to NULL
void hmapi_next(struct hash_map_iter* iter);
/// Get a key-value pair at the iterator iter. 
/// If iter is pointing beyond hash map (after the last element), `(struct hmap_pair){NULL, NULL}` is returned
struct hmap_pair hmapi_get_data(const struct hash_map_iter* iter);
void* hmapi_get_key(const struct hash_map_iter* iter);
void* hmapi_get_val(const struct hash_map_iter* iter);
/// the function does comparison the same way `qsort_cmp_t` might do it, except this is wrapped in an enum. 
/// This is done because 2 iterators might be incomparable (come from different hash maps), in this case `hampi_no` is returned.
enum hmapi_cmp_res hmapi_cmp(const struct hash_map_iter *a, const struct hash_map_iter* b);
/// 1 if a > b, 0 otherwise.
char hmapi_gt(const struct hash_map_iter *a, const struct hash_map_iter* b);
/// 1 if a = b, 0 otherwise
char hmapi_eq(const struct hash_map_iter *a, const struct hash_map_iter* b);
/// 1 if a < b, 0 otherwise
char hmapi_lt(const struct hash_map_iter *a, const struct hash_map_iter* b);
/// 1 if a >= b, 0 otherwise 
char hmapi_ge(const struct hash_map_iter *a, const struct hash_map_iter* b);
/// 1 if a <= b, 0 otherwise 
char hmapi_le(const struct hash_map_iter *a, const struct hash_map_iter* b);
/// 1 if a != b, otherwise 0
char hmapi_ne(const struct hash_map_iter *a, const struct hash_map_iter* b);
/// 1 if `iter` is an end iterator, 0 otherwise
char hmapi_end(const struct hash_map_iter* iter);


/* ------------------------------------------------------------------------- */
/* ------From now on, the rest of the header is implementation details------ */
/* -------------------the API and documentation end here-------------------- */
/* ------------------------------------------------------------------------- */

enum _dynarray_header_idx {
	_dah_idx_member_size	= 0,
	_dah_idx_capacity	= 1,
	_dah_idx_size		= 2,
};
struct _dynarray_header {
	size_t memb_size;
	size_t capacity;
	size_t size;
};

void *_alloc_dynarray(size_t el_size, size_t len);
void *_alloc_dynarray_buffer(size_t el_size, size_t alen, void *buffer, size_t blen);
/// Forcibly change size AND capacity of the array to new value
/// ignores the power-of-2-capacity rule
void *_force_resize_dynarray(void *dynarray, size_t new_size);
void *_memreserve_dynarray(void *dynarray, size_t reserved);
void *_memshrink_array(void *dynarray);
void *_insert_to_index_dynarray(void *const dynarray, const void *const element, size_t el_size, size_t index);


// uncomment in dev mode so that LSP highlights the code
#define CONTAINER_IMPLEMENTATION
#ifdef CONTAINER_IMPLEMENTATION

/* ----------------------------------------------------------------- */
/* ---------------------UTILITY IMPLEMENTATION---------------------- */
/* ----------------------------------------------------------------- */

#ifndef __GNUC__
unsigned long __bit_scan_32(int32_t number) {
	#ifdef _MSC_VER
		unsigned long index;
		if (_BitScanReverse(&index, number)) {
			return index + 1;
		} else {
			return 1;
		}
	#else // _MSC_VER
		unsigned long count;
		for (count = 0; number; number >>= 1) { ++count; }
		return count;
	#endif // _MSC_VER
}
unsigned long __bit_scan_64(int64_t number) {
	#ifdef _MSC_VER
		unsigned long index;
		if (_BitScanReverse64(&index, number)) {
			return index + 1;
		} else {
			return 1;
		}
	#else // _MSC_VER
		unsigned long count;
		for (count = 0; number; number >>= 1) { ++count; }
		return count;
	#endif // _MSC_VER
}
#endif // __GNUC__


_CONTAINER_STATIC int __default_char_cmp(const void* a, const void* b) {
	char x = *(char*)a, y = *(char*)b;
	if (x < y) return -1;
	if (x > y) return 1;
	return 0;
}
_CONTAINER_STATIC int __default_short_cmp(const void* a, const void* b) {
	short x = *(short*)a, y = *(short*)b;
	if (x < y) return -1;
	if (x > y) return 1;
	return 0;
}
_CONTAINER_STATIC int __default_int_cmp(const void* a, const void* b) {
	int x = *(int*)a, y = *(int*)b;
	if (x < y) return -1;
	if (x > y) return 1;
	return 0;
}
_CONTAINER_STATIC  int __default_long_long_cmp(const void* a, const void* b) {
	long long x = *(long long*)a, y = *(long long*)b;
	if (x < y) return -1;
	if (x > y) return 1;
	return 0;
}
_CONTAINER_STATIC int __default_long_cmp(const void* a, const void* b) {
	long x = *(long*)a, y = *(long*)b;
	if (x < y) return -1;
	if (x > y) return 1;
	return 0;
}

#ifdef __GNUC__
// cope
#pragma GCC diagnostic ignored "-Woverride-init" // Is is meant to override it on different platforms
const qsort_cmp_t __qsort_cmps[64] = {
	[sizeof(char)] = __default_char_cmp,
	[sizeof(short)] = __default_short_cmp,
	[sizeof(int)] = __default_int_cmp,
	[sizeof(long)] = __default_long_cmp,
	[sizeof(long long)] = __default_long_long_cmp,
	[63] = 0,
};
#pragma GCC diagnostic warning "-Woverride-init"
#else 	// not __GNUC__
const qsort_cmp_t __qsort_cmps[64] = {
	0, 
	__default_char_cmp, __default_short_cmp, 0, __default_int_cmp, 
	0, 0, 0, __default_long_long_cmp,
};
#endif 	// __GNUC__


/* ----------------------------------------------------------------- */
/* ----------------------ARRAY IMPLEMENTATION----------------------- */
/* ----------------------------------------------------------------- */

void *_alloc_dynarray(size_t el_size, size_t len)
{
	byte *data = (byte *)malloc(el_size * len + DYNARRAY_HEADER_SIZE);
	if (data == NULL) return NULL;
	struct _dynarray_header *header = (struct _dynarray_header *)data;
	header->size = len;
	header->capacity = len;
	header->memb_size = el_size;
	return data + DYNARRAY_HEADER_SIZE;
}
/// assumes that element size in the buffer is the same as element size in the array
void *_alloc_dynarray_buffer(size_t el_size, size_t alen, void *buffer, size_t blen) { 
	void *array = _alloc_dynarray(el_size, alen);
	memcpy(array, buffer, el_size * blen);
	return array;
}
void *_memreserve_dynarray(void * const dynarray, size_t reserved)
{
	struct _dynarray_header *hdr = array_header(dynarray);
	if (hdr->capacity >= reserved) return dynarray;
	byte *data = (byte *)hdr;
	data = (byte *)realloc(data, reserved * hdr->memb_size + DYNARRAY_HEADER_SIZE);
	if (data == NULL) return NULL;
	hdr = (struct _dynarray_header *)data;
	hdr->capacity = reserved;
	return data + DYNARRAY_HEADER_SIZE;
}
void *_memshrink_array(void * const dynarray)
{
	struct _dynarray_header *hdr = array_header(dynarray);
	byte *data = (byte *)hdr;
	data = (byte*) realloc(data, hdr->size * hdr->memb_size + DYNARRAY_HEADER_SIZE);
	if (data == NULL) return NULL;
	hdr = (struct _dynarray_header *) data;
	hdr->capacity = hdr->size;
	return data + DYNARRAY_HEADER_SIZE;
}
void *_force_resize_dynarray(void * const dynarray, size_t new_size)
{
	struct _dynarray_header *hdr = array_header(dynarray);
	if (new_size < hdr->size) {
		hdr->size = new_size;
		hdr->capacity = 1 << upper_2_power_64(new_size);
		byte *arr = (byte*) realloc(hdr, hdr->memb_size * hdr->capacity + DYNARRAY_HEADER_SIZE);
		if (arr == NULL) return NULL;
		return arr + DYNARRAY_HEADER_SIZE;

	} else {
		void* arr;
		if ((arr = _memreserve_dynarray(dynarray, 1 << upper_2_power_64(new_size))) == NULL) return NULL;
		hdr = array_header(arr);
		hdr->size = new_size;
		return arr;
	}
}
void *_insert_to_index_dynarray(void *const dynarray, const void *const element, size_t el_size, size_t index) {
	struct _dynarray_header* hdr = array_header(dynarray);
	byte* array = (byte*) _memreserve_dynarray(dynarray, 1 << upper_2_power_64(hdr->size + 1));
	hdr = array_header(array);
	++hdr->size;
	memmove(array + hdr->memb_size * (index+1), array + hdr->memb_size * (index), hdr->memb_size * (hdr->size - 1 - index));
	if (el_size != hdr->memb_size) { /* TODO: warning? */ }
	memcpy(array + hdr->memb_size * index, element, el_size);
	return array;
}
int array_compare(const void *const a1, const void *const a2, qsort_cmp_t comp) {
	struct _dynarray_header *hdr = array_header(a1);
	struct _dynarray_header *hdr2 = array_header(a2);
	const size_t s1 = hdr->size, s2 = hdr2->size;
	const size_t elsize = hdr->memb_size;
	size_t i;
	for (i = 0; i < s1 && i < s2; ++i) {
		int result = comp((byte*) a1 + elsize*i, (byte*) a2 + elsize*i);
		if (result) return result;
	}
	if (s1 == s2) return 0;
	if (i == s1) return -1;
	if (i == s2) return 1;
	TODO;
	__builtin_unreachable();
}
void* array_copy(void* old) {
	return _alloc_dynarray_buffer(array_element_size(old), array_size(old), old, array_size(old) * array_element_size(old));
}
char array_binary_search(void* array, void* element, qsort_cmp_t cmp) {
	ssize_t index1 = -1,
	        index2 = array_size(array);
	if (index2 == 0) return 0;
	while (1) {
		ssize_t index3 = (index1+index2)/2;
		if (index3 == index2 || index3 == index1 || index1 == index2) return 0;
		int result = cmp(element, (byte*)array + array_element_size(array) * index3);
		if (result == 0) return 1;
		if (result < 0) index2 = index3;
		else if (result > 0) index1 = index3;
	}
}
struct linked_list array_to_ll(void* array) {
	struct linked_list ret = ll_create_from_buffer(array_element_size(array), array, array_size(array));
	return ret;
}

/* ----------------------------------------------------------------- */
/* ------------------LINKED LIST IMPLEMENTATION--------------------- */
/* ----------------------------------------------------------------- */
struct linked_list ll_create(size_t memb_size) {
	struct __linked_list_meta meta = {
		.assumed_size = 0,
		.element_size = memb_size,
		.free_function = free,
	};
	struct linked_list ret = {
		.meta = meta,
		.first = NULL,
		.last = NULL,
	};
	return ret;
}
struct linked_list ll_create_from_buffer(size_t memb_size, const void* buf, size_t buff_len) {
	struct __linked_list_meta meta = {
		.assumed_size = buff_len,
		.element_size = memb_size,
		.free_function = free,
	};
	struct linked_list_node *current_node = calloc(1, sizeof(struct linked_list_node));
	struct linked_list ret = { .meta = meta, .first = current_node };
	for (size_t i = 0; i < buff_len; ++i) {
		current_node->data = malloc(memb_size);
		memcpy(current_node->data, (const byte *)buf + memb_size * i, memb_size);
		if (i != buff_len - 1) {
			current_node->next = calloc(1, sizeof(struct linked_list_node));
			current_node = current_node->next;
		}
	}
	ret.last = current_node;
	return ret;
}
/// An older, more ugly implementation
void ll_free_(struct linked_list* list) {
	struct linked_list_node *to_dealloc = NULL;
	for (struct linked_list_node *current = list->first; current != NULL; current = current->next) {
		free(to_dealloc);
		free(current->data);
		to_dealloc = current;
	}
	free(to_dealloc);
	memset(list, 0, sizeof(*list));
}
void ll_free(struct linked_list* list) {
	struct linked_list_node* node = list->first;
	while ((node = ll_free_node(list, node)) != NULL) {}
	memset(list, 0, sizeof(*list));
}
char ll_search(const struct linked_list* list, const void* element, qsort_cmp_t cmp) {
	for (struct linked_list_node *current = list->first; current != NULL; current = current->next) {
		if (cmp(element, current->data) == 0) return 1;
	}
	return 0;
}
struct linked_list_node* ll_find(const struct linked_list* list, const void* element, qsort_cmp_t cmp) {
	for (struct linked_list_node *current = list->first; current != NULL; current = current->next) {
		if (cmp(element, current->data) == 0) return current;
	}
	return NULL;
}
struct linked_list_node* ll_at(const struct linked_list* list, const size_t i) {
	size_t j = 0;
	if (i == list->meta.assumed_size - 1) return list->last;
	if (i >= list->meta.assumed_size) return NULL;
	for (struct linked_list_node *current = list->first; current != NULL; current = current->next) {
		if (i == j) return current; 
		++j;
	}
	return NULL;
}
void ll_truncate(struct linked_list* list, const size_t i) {
	if (i == 0) {
		ll_free(list);
		return;
	}
	struct linked_list_node *start = ll_at(list, i-1);
	if (start == NULL) return;
	struct linked_list freeable = {
		.meta = {list->meta.element_size, list->meta.assumed_size - i},
		.first = start->next,
	};
	ll_free(&freeable);
	list->meta.assumed_size = i;
	start->next = NULL;
	list->last = start;
}
size_t ll_probably_size(const struct linked_list* list) {
	return list->meta.assumed_size;
}
size_t ll_definite_size(struct linked_list *list) {
	int i = 0;
	for (struct linked_list_node *current = list->first; current != NULL; current = current->next)
		++i;
	list->meta.assumed_size = i;
	return i;
}
void ll_append(struct linked_list *list, const void* restrict element) {
	struct linked_list_node *new = calloc(1, sizeof(struct linked_list_node));
	new->data = malloc(list->meta.element_size);
	memcpy(new->data, element, list->meta.element_size);
	if (list->last == NULL) list->first = new;
	else list->last->next = new;
	++list->meta.assumed_size;
	list->last = new;
}
void ll_append_mallocated_pointer(struct linked_list *list, void* pointer) {
	struct linked_list_node *new = malloc(sizeof(struct linked_list_node));
	new->data = pointer;
	new->next = NULL;
	if (list->last == NULL) list->first = list->last = new;
	else list->last->next = new;
	++list->meta.assumed_size;
	list->last = new;
}
void ll_insert_front(struct linked_list *list, const void* restrict element) {
	struct linked_list_node *new = calloc(1, sizeof(struct linked_list_node));
	new->data = malloc(list->meta.element_size);
	memcpy(new->data, element, list->meta.element_size);
	if (list->first == NULL) list->first = list->last = new;
	else {
		new->next = list->first;
		list->first = new;
	}
	++list->meta.assumed_size;
}
void ll_insert_front_mallocated_pointer(struct linked_list *list, void* pointer) {
	struct linked_list_node *new = calloc(1, sizeof(struct linked_list_node));
	new->data = pointer;
	if (list->first == NULL) list->first = list->last = new;
	else {
		new->next = list->first;
		list->first = new;
	}
	++list->meta.assumed_size;
}
char ll_insert_at(struct linked_list *list, const void* restrict element, size_t i) {
	if (i == 0) {
		ll_insert_front(list, element);
		return 1;
	}
	if (i == list->meta.assumed_size) {
		ll_append(list, element);
		return 1;
	}
	if (list->last == NULL) return 0;

	struct linked_list_node* delim;
	if ( (delim = ll_at(list, i-1)) == NULL ) return 0;
	struct linked_list_node* new = malloc(sizeof(struct linked_list_node));
	new->next = delim->next;
	delim->next = new;
	new->data = malloc(list->meta.element_size);
	memcpy(new->data, element, list->meta.element_size);
	++list->meta.assumed_size;
	return 1;
}
char ll_insert_at_mallocated_pointer(struct linked_list *list, void* pointer, size_t i) {
	if (i == 0) {
		ll_insert_front_mallocated_pointer(list, pointer);
		return 1;
	}
	if (i == list->meta.assumed_size) {
		ll_append_mallocated_pointer(list, pointer);
		return 1;
	}
	if (list->last == NULL) return 0;

	struct linked_list_node* delim;
	if ((delim = ll_at(list, i-1)) == NULL) return 0;
	struct linked_list_node* new = malloc(sizeof(struct linked_list_node));
	new->next = delim->next;
	delim->next = new;
	new->data = pointer;
	++list->meta.assumed_size;
	return 1;
}
void ll_remove_front(struct linked_list* list) {
	if (list->first == NULL) return;
	list->first = ll_free_node(list, list->first);
	--list->meta.assumed_size;
	if (list->meta.assumed_size <= 1) list->last = list->first;
}
void ll_remove_back(struct linked_list* list) {
	if (list->meta.assumed_size == 0) return;
	if (list->meta.assumed_size == 1) {
		list->first = list->last = ll_free_node(list, list->first);
		goto common;
	}
	if (list->meta.assumed_size == 2) {
		list->first->next = ll_free_node(list, list->last);
		list->last = list->first;
		goto common;
	}
	struct linked_list_node* prelast;
	if ((prelast = ll_at(list, list->meta.assumed_size-1-1)) == NULL) return;
	ll_free_node(list, list->last);
	prelast->next = NULL;
	list->last = prelast;
common:
	--list->meta.assumed_size;
}
char ll_remove_at(struct linked_list *list, size_t i) {
	if (list->first == NULL) return 0;
	if (i == 0) {
		ll_remove_front(list);
		return 1;
	}
	if (i == list->meta.assumed_size - 1) {
		ll_remove_back(list);
		return 1;
	}
	struct linked_list_node *before_removed;
	if ((before_removed = ll_at(list, i-1)) == NULL) return 0;
	before_removed->next = ll_free_node(list, before_removed->next);
	--list->meta.assumed_size;
	return 1;
}
void ll_remove_all(struct linked_list* list, const void* elem, qsort_cmp_t cmp) {
	while (cmp(list->first->data, elem) == 0) ll_remove_front(list);
	struct linked_list_node *prev = list->first,
			        *current;
	for (current = prev->next; current != NULL; current = prev->next) {
		if (cmp(current->data, elem) != 0) {
			prev = current;
			continue;
		}
		if (current == list->last) {
			ll_remove_back(list);
			return;
		}
		prev->next = ll_free_node(list, current);
		--list->meta.assumed_size;
	}
}
struct linked_list ll_split_at(struct linked_list *list, size_t i) {
	struct linked_list ret = {.meta = list->meta };
	ret.meta.element_size = list->meta.element_size;
	if (i == 0) {
		ret = *list;
		list->first = list->last = NULL;
		list->meta.assumed_size = 0;
		return ret;
	}
	if (i == list->meta.assumed_size) return ll_create(list->meta.element_size);
	struct linked_list_node* spl_prev = ll_at(list, i-1);
	if (spl_prev == NULL) return ret;
	ret.first = spl_prev->next;
	ret.last = list->last;
	spl_prev->next = NULL;
	list->last = spl_prev;
	ret.meta.assumed_size = list->meta.assumed_size - i;
	list->meta.assumed_size = i;
	return ret;
}
void ll_merge(struct linked_list* fst, struct linked_list* snd) {
	fst->last->next = snd->first;
	fst->last = snd->last;
	fst->meta.assumed_size += snd->meta.assumed_size;
	memset(snd, 0, sizeof(*snd));
}
struct linked_list* ll_split_n(struct linked_list* list, size_t splits, ...) {
	struct linked_list* ret = array_new(struct linked_list, splits + 1);
	ret[0] = *list;
	size_t accum_index = 0;
	va_list args;
	va_start(args, splits);
	for (size_t i = 1; i <= splits; ++i) {
		size_t split_index = va_arg(args, size_t);
		ret[i] = ll_split_at(ret+i-1, split_index-accum_index);
		accum_index = split_index;
	}
	return ret;
}
void ll_merge_n(struct linked_list* result, size_t merges, ...) {
	va_list args;
	va_start(args, merges);
	for (size_t i = 0; i < merges; ++i) {
		struct linked_list* list = va_arg(args, struct linked_list*);
		ll_merge(result, list);
	}
}
void* ll_to_array(const struct linked_list* list) {
	return ll_to_array_custom_cpy(list, memcpy);
}
void* ll_to_array_custom_cpy(const struct linked_list* list, memcpy_t cpy) {
	void* array = _alloc_dynarray(list->meta.element_size, list->meta.assumed_size);
	struct linked_list_node* iter = list->first;
	for (size_t i = 0; (iter = iter->next) != NULL; ++i) {
		cpy((byte*) array + list->meta.element_size * i, iter->data, list->meta.element_size);
	}
	return array;
}
void ll_sort(struct linked_list *list, qsort_cmp_t cmp) {
	void* array = ll_to_array(list);
	array_qsort(array, cmp);
	ll_free(list);
	*list = array_to_ll(array);
	array_free(array);
}
struct linked_list_node* ll_free_node(struct linked_list* list, struct linked_list_node* node) {
	if (node == NULL) return NULL;
	struct linked_list_node* ret = node->next;
	list->meta.free_function(node->data);
	free(node);
	return ret;
}
void ll_set_free(struct linked_list* list, free_t new_free) {
	list->meta.free_function = new_free;
}
struct linked_list ll_deep_copy(const struct linked_list* list, memcpy_t cpy) {
	if (cpy == NULL) cpy = memcpy;
	struct linked_list ret = *list;
	ret.meta.assumed_size = 0;
	ret.last = ret.first = NULL;
	struct linked_list_node* iter = list->first;
	void* memory = alloca(list->meta.element_size);
	memset(memory, 0, list->meta.element_size);
	while (iter != NULL) {
		ll_append(&ret, memory);
		cpy(iter->data, ret.last->data, list->meta.element_size);
		iter = iter->next;
	}
	return ret;
}


/* ----------------------------------------------------------------- */
/* ---------------------HASH MAP IMPLEMENTATION--------------------- */
/* ----------------------------------------------------------------- */

void __hmap_ll_custom_free(void* data) {
	struct hmap_pair *pair = data;
	free(pair->key);
	free(pair->val);
	free(pair);
}
struct hash_map hmap_create(const size_t key_size, const size_t val_size, hmap_equal_fn eq, hmap_hash_fn hash) {
	struct hash_map ret = {
		.buckets = array_new(struct linked_list, HMAP_DEFAULT_BUCKETS),
		.key_size = key_size,
		.val_size = val_size,
		.eq = eq,
		.hash = hash,
	};
	const struct linked_list def = {
		.meta = {
			.element_size = key_size+val_size, 
			.assumed_size = 0, 
			.free_function = __hmap_ll_custom_free,
		}, 
		.first = NULL, 
		.last = NULL,
	};
	for (size_t i = 0; i < HMAP_DEFAULT_BUCKETS; ++i) ret.buckets[i] = def;
	return ret;
}
struct hash_map hmap_create_from_buffer(size_t key_size, size_t val_size, hmap_equal_fn eq, hmap_hash_fn hash, struct hmap_pair* buf, size_t buf_len) {
	struct hash_map ret = hmap_create(key_size, val_size, eq, hash);
	for (size_t i = 0; i < buf_len; ++i) ll_append(ret.buckets + (ret.hash(buf[i].key) % array_size(ret.buckets)), buf + i);
	return ret;
}
void hmap_free(struct hash_map* map) {
	for (size_t i = 0; i < array_size(map->buckets); ++i) ll_free(map->buckets + i);
	array_free(map->buckets);
	memset(map, 0, sizeof(*map));
}
void hmap_insert(struct hash_map* map, struct hmap_pair element) {
	size_t index = map->hash(element.key) % array_size(map->buckets);
	ll_append(map->buckets + index, &element);
	if (map->buckets[index].meta.assumed_size > HMAP_BUCKET_MAX_SIZE) hmap_rehash(map);
}
/// pair is a pointer
void hmap_insert_range(struct hash_map* map, struct hmap_pair* elements, size_t elements_len) {
	for (size_t i = 0; i < elements_len; ++i) hmap_insert(map, elements[i]);
}
void* hmap_get(struct hash_map* map, void* key) {
	size_t index = map->hash(key) % array_size(map->buckets);
	struct linked_list* target_list = map->buckets + index;
	struct linked_list_node* node = ll_find(target_list, key, map->eq);
	if (node == NULL) { return NULL; }
	struct hmap_pair *pair = node->data;
	return pair->val;
}
void hmap_remove(struct hash_map* map, void* key) {
	size_t index = map->hash(key) % array_size(map->buckets);
	struct linked_list* target_list = map->buckets + index;
	struct hmap_pair tmppr = {.key = key, .val = NULL};
	ll_remove_all(target_list, &tmppr, map->eq);
}
/// double the size of a hash map
void hmap_rehash(struct hash_map* map) {
	size_t new_size = array_size(map->buckets) * 2;
	struct linked_list* new_buckets = array_new(struct linked_list, new_size);
	for (size_t i = 0; i < new_size; ++i)
		new_buckets[i] = ll_create( /* I know this is ugly */ map->buckets[0].meta.element_size);

	struct hash_map_iter iter;
	for (hmapi_begin(map, &iter); !hmapi_end(&iter); hmapi_next(&iter)) {
		size_t hash_pos = map->hash(hmapi_get_key(&iter)) % new_size;
		struct hmap_pair hash_data = hmapi_get_data(&iter);
		ll_append(new_buckets + hash_pos, &hash_data);
	}
	array_free(map->buckets);
	map->buckets = new_buckets;
}
void hmapi_begin(const struct hash_map* map, struct hash_map_iter* iter) {
	memset(iter, 0, sizeof(struct hash_map_iter));
	iter->map = map;
	struct linked_list* buckets = map->buckets;
	for (size_t i = 0; i < array_size(buckets); ++i) {
		if (buckets[i].first == NULL) continue;
		iter->bucket_pos = i;
		iter->current_node = buckets[i].first;
		return;
	}
	iter->bucket_pos = SIZE_MAX;
	iter->current_node = NULL;
}
void hmapi_next(struct hash_map_iter* iter) {
	if (iter->current_node == NULL) return;
	if (iter->current_node->next != NULL) {
		iter->current_node = iter->current_node->next;
		return;
	}
	const struct linked_list *buckets = iter->map->buckets;
	for (size_t i = iter->bucket_pos + 1; i < array_size(buckets); ++i) {
		if (buckets[i].first == NULL) continue;
		iter->bucket_pos = i;
		iter->current_node = buckets[i].first;
		return;
	}
	iter->bucket_pos = SIZE_MAX;
	iter->current_node = NULL;
}
struct hmap_pair hmapi_get_data(const struct hash_map_iter* iter) {
	if (iter->current_node == NULL) return (struct hmap_pair){NULL, NULL};
	struct hmap_pair ret = *(struct hmap_pair*)(iter->current_node->data);
	return ret;
}
void* hmapi_get_key(const struct hash_map_iter* iter) {
	if (iter->current_node == NULL) return NULL;
	struct hmap_pair *pair = iter->current_node->data;
	return pair->key;
}
void* hmapi_get_val(const struct hash_map_iter* iter) {
	if (iter->current_node == NULL) return NULL;
	struct hmap_pair *pair = iter->current_node->data;
	return pair->val;
}
enum hmapi_cmp_res hmapi_cmp(const struct hash_map_iter *a, const struct hash_map_iter* b) {
	if (a->map != b->map) return hmap_no;
	if (a->bucket_pos != b->bucket_pos) return (a->bucket_pos > b->bucket_pos) ? hmap_gt : hmap_lt;
	if (a->current_node == b->current_node) return hmap_eq;
	for (const struct linked_list_node* nd = a->current_node; nd != NULL; nd = nd->next) {
		if (nd == b->current_node) return hmap_lt;
	}
	return hmap_gt;
}
char hmapi_gt(const struct hash_map_iter *a, const struct hash_map_iter* b) {
	return hmapi_cmp(a, b) == hmap_gt;
}
char hmapi_eq(const struct hash_map_iter *a, const struct hash_map_iter* b) {
	return hmapi_cmp(a, b) == hmap_eq;
}
char hmapi_lt(const struct hash_map_iter *a, const struct hash_map_iter* b) {
	return hmapi_cmp(a, b) == hmap_lt;
}
char hmapi_ge(const struct hash_map_iter *a, const struct hash_map_iter* b) {
	enum hmapi_cmp_res res = hmapi_cmp(a, b);
	return res == hmap_gt || res == hmap_eq;
}
char hmapi_le(const struct hash_map_iter *a, const struct hash_map_iter* b) {
	enum hmapi_cmp_res res = hmapi_cmp(a, b);
	return res == hmap_lt || res == hmap_eq;
}
char hmapi_ne(const struct hash_map_iter *a, const struct hash_map_iter* b) {
	return hmapi_cmp(a, b) != hmap_eq;
}
char hmapi_end(const struct hash_map_iter* iter) {
	return iter->current_node == NULL || iter->bucket_pos == SIZE_MAX;
}


#endif // CONTAINER_IMPLEMENTATION

#endif // JUSTANOTHERCATGIRL_HEADERS_CONTAINER