#include #include "include/praktable.hpp" #include "include/prakphys.hpp" using table = prak::table; using f64p = prak::pvalue; using f64v = std::vector; using vecarg = const std::vector &; using argvec = const std::vector &; template std::ostream& operator<<(std::ostream& os, const std::vector& vec) { os << "{ "; for (const auto& val: vec) os << val << ", "; os << "} "; return os; } auto ex1(std::string file) { table t(file); t.column_width = 12; std::cout << t .apply(prak::diff, {"h1", "h2"}, "p") .fill_column("sp", 0.1 * std::sqrt(2.0)) .apply(prak::log, {"p"}, "ln(p)") .add_column("s_ln(p)") .apply(prak::quot, {"sp", "p"}, "s_ln(p)") .apply(prak::add>, {"T"}, "T") .apply(prak::inv, {"T"}, "1/T") .apply(prak::avg, {"t1", "t2", "t3"}, "t") .apply(prak::stddev, {"t1", "t2", "t3"}, "st") .delete_cols({"t1", "t2", "t3"}) .write_plot("plot_lnp.plot", "1/T", "ln(p)", "s_ln(p)"); auto [A, B] = t.least_squares_linear("1/T", "ln(p)", "s_ln(p)", std::nullopt); std::cout << "Мнк ln(p) от (1/T): " << A << ' ' << B << std::endl; f64 a_tbl = .5451, mu = .09209, v_w = .00100177, v_s = 57.8; f64p Q = A * (-prak::R); f64p q = Q/mu, p = 1333.2239023154 * (f64p){t["p", 4], t["sp", 4]}; f64p a = mu*mu*(q - p*v_s)*v_w; std::cout << "\nmu = " << mu << ", v_воды = " << v_w << ", v_пар = " << v_s << ", p = " << p << " (темература 20 по методу наглых подгонов)" << "\nQ = " << Q << ", q = " << q << ", a = " << a << ", a_теор = " << a_tbl << ", отклонение = " << a_tbl - a << std::endl; return t; } void ex2(prak::table t) { f64 beta = 6.1e-4, rho_0 = 1263.6, rho_1 = 8131, T_0 = 20 + conv::C_to_K, K = 114.4e-3, mu = .09209; t .add_column("rho_2") .apply([=](vecarg a){ return rho_0 / (1 + beta * (a[0] - T_0)); }, {"T"}, "rho_2") .add_column("s_rho_2", 0.000001) .apply_function_n( [=](vecarg a){ return K * (rho_1 - a[0]) * a[1]; }, {t.begin("rho_2"), t.begin("t")}, {t.begin("s_rho_2"), t.begin("st")}, t.rows, "nu", "snu") .add_column("ln(nu)", NAN) .add_column("s_ln(nu)", NAN) .apply_function_n(prak::log, {t.begin("nu")}, {t.begin("snu")}, t.rows, "ln(nu)", "s_ln(nu)") .add_column("1/nu", NAN) .add_column("s_1/nu", NAN) .add_column("1/rho_2", NAN) .apply(prak::inv, {"nu"}, "1/nu") .apply([](vecarg a){ return a[1] / a[0] / a[0]; }, {"nu", "snu"}, "s_1/nu") .apply(prak::inv, {"rho_2"}, "1/rho_2") .delete_cols({"h1", "h2", "p", "sp", "ln(p)", "t", "st"}) .write_plot("plot_lnn.plot", "1/T", "ln(nu)", "s_ln(nu)") .write_plot("plot_nut.plot", "1/rho_2", "1/nu", "s_1/nu") .print(); auto [A, B] = t.least_squares_linear("1/T", "ln(nu)", "s_ln(nu)", std::nullopt); f64p eps = prak::k * A; std::cout << "Мнк ln(p) (1/T): (" << A << ")x + (" << B << ")\n" << "энергия активации: " << eps * conv::J_to_eV << "эВ" << std::endl; auto [A1, B1] = t.least_squares_linear("1/rho_2", "1/nu", "s_1/nu", std::nullopt); f64p c = A / mu, b = -mu * B / A; std::cout << "Мнк 1/nu (1/rho_2): (" << A1 << ")x + (" << B1 << ")\n" << "b = " << b << "; c = " << c << std::endl; } int main() { ex2(ex1("data1")); return 0; }