aboutsummaryrefslogtreecommitdiffstats
path: root/libprakipp/include/prakmath.hpp
diff options
context:
space:
mode:
Diffstat (limited to 'libprakipp/include/prakmath.hpp')
-rw-r--r--libprakipp/include/prakmath.hpp289
1 files changed, 0 insertions, 289 deletions
diff --git a/libprakipp/include/prakmath.hpp b/libprakipp/include/prakmath.hpp
deleted file mode 100644
index 342c0cd..0000000
--- a/libprakipp/include/prakmath.hpp
+++ /dev/null
@@ -1,289 +0,0 @@
-#pragma once
-
-#include <cmath>
-#include <concepts>
-
-#ifdef __x86_64__
-#include <immintrin.h>
-#endif
-
-#include "prakcommon.hpp"
-#include "prakmatrix.hpp"
-
-namespace prak {
-
-// :)
-constexpr const double PI = 3.141592657;
-constexpr const float fPI = 3.141592657f;
-
-/// defines a type that supports arithmetic operation
-template <typename T>
-concept arithmetic = requires(T a) {
- a + a;
- a * a;
- a - a;
- a / a;
-};
-
-/// TODO: remove
-enum struct operation { mul, div, add, sub };
-
-/// vector multiply: fallback for non-floating-point types
-template <arithmetic T>
-void vmul(const T *op1, const T *op2, T *dest, size_t s) {
- for (size_t i = 0; i < s; ++i) {
- dest[i] = op1[i] * op2[i]; break;
- }
-}
-
-/// vector multiply: float implementation
-template <>
-inline void vmul(const float *op1, const float *op2, float *dest, size_t s) {
- if (s < 8) goto scalar;
- __m256 b1;
- __m256 b2;
-
- for (size_t i = 0; i < s / 8; ++i) {
- b1 = _mm256_load_ps(op1 + 8*i);
- b2 = _mm256_load_ps(op2 + 8*i);
- b1 = _mm256_mul_ps(b1, b2);
- _mm256_store_ps(dest + 8*i, b1);
- }
-scalar:
- for (size_t i = s - s % 8; i < s; ++i) {
- dest[i] = op1[i] * op2[i];
- }
-}
-
-/// vector multiply: double implementation
-template <>
-inline void vmul(const double *op1, const double *op2, double *dest, size_t s) {
- if (s < 4) goto scalar;
- __m256d b1;
- __m256d b2;
-
- for (size_t i = 0; i < s / 4; ++i) {
- b1 = _mm256_load_pd(op1 + 4*i);
- b2 = _mm256_load_pd(op2 + 4*i);
- b1 = _mm256_mul_pd(b1, b2);
- _mm256_store_pd(dest + 4*i, b1);
- }
-scalar:
- for (size_t i = s - s % 4; i < s; ++i) {
- dest[i] = op1[i] * op2[i];
- }
-}
-
-/// vector division: non-floating-point types fallback
-template <arithmetic T>
-void vdiv(const T *op1, const T *op2, T *dest, size_t s) {
- for (size_t i = 0; i < s; ++i) {
- dest[i] = op1[i] / op2[i]; break;
- }
-}
-
-/// vector division: floating point: single precision
-template <>
-inline void vdiv(const float *op1, const float *op2, float *dest, size_t s) {
- if (s < 8) goto scalar;
- __m256 b1;
- __m256 b2;
-
- for (size_t i = 0; i < s / 8; ++i) {
- b1 = _mm256_load_ps(op1 + 8*i);
- b2 = _mm256_load_ps(op2 + 8*i);
- b1 = _mm256_div_ps(b1, b2);
- _mm256_store_ps(dest + 8*i, b1);
- }
-scalar:
- for (size_t i = s - s % 8; i < s; ++i) {
- dest[i] = op1[i] / op2[i];
- }
-}
-
-/// vector division: floating point: double precision
-template <>
-inline void vdiv(const double *op1, const double *op2, double *dest, size_t s) {
- if (s < 4) goto scalar;
- __m256d b1;
- __m256d b2;
-
- for (size_t i = 0; i < s / 4; ++i) {
- b1 = _mm256_load_pd(op1 + 4*i);
- b2 = _mm256_load_pd(op2 + 4*i);
- b1 = _mm256_div_pd(b1, b2);
- _mm256_store_pd(dest + 4*i, b1);
- }
-scalar:
- for (size_t i = s - s % 4; i < s; ++i) {
- dest[i] = op1[i] / op2[i];
- }
-}
-
-inline float finalize(__m256 reg) {
- // reg: x0 | x1 | x2 | x3 | x4 | x5 | x6 | x7
- __m128 extr = _mm256_extractf128_ps(reg, 1);
- // extr: x0 | x1 | x2 | x3
- // __mm256_castps256_ps128: x4 | x5 | x6 | x7
- extr = _mm_add_ps(extr, _mm256_castps256_ps128(reg));
- // extr: x0+x4 | x1 + x5 | x2 + x6 | x3 + x7
- extr = _mm_hadd_ps(extr, extr);
- // extr: x0 + x1 + x2 + x5 | x2 + x3 + x6 x7 | ... | ...
- return extr[0] + extr[1];
-}
-
-inline double finalize(__m256d reg) {
- // reg: x0 | x1 | x2 | x3
- reg = _mm256_hadd_pd(reg, reg);
- // reg: x0 + x1 | x2 + x3 | ... | ...
- return reg[0] + reg[1];
-}
-
-/// Fallback generic method to sum a vector
-template <arithmetic T>
-T vsum(const T *op, size_t size) {
- T res;
- for (size_t i = 0; i < size; ++i)
- res += op[i];
- return res;
-}
-
-/// Sum a vector, float implementation
-template <>
-inline float vsum(const float *op, size_t size) {
- __m256 buf;
- buf = _mm256_setzero_ps();
- if (size < 8) goto scalar;
- for (size_t i = 0; i < size / 8; ++i) {
- __m256 next = _mm256_load_ps(op + 8*i);
- buf = _mm256_add_ps(buf, next);
- }
-scalar:
- float linear = 0;
- for (size_t i = size - size%8; i < size; ++i) {
- linear += op[i];
- }
- return linear + finalize(buf);
-}
-
-/// Sum a vector, double implementation
-template <>
-inline double vsum(const double *op, size_t size) {
- __m256d buf;
- buf = _mm256_setzero_pd();
- if (size < 4) goto scalar;
- for (size_t i = 0; i < size / 4; ++i) {
- __m256d next = _mm256_load_pd(op + 4*i);
- buf = _mm256_add_pd(buf, next);
- }
-scalar:
- double linear = 0;
- for (size_t i = size - size%8; i < size; ++i) {
- linear += op[i];
- }
- return linear + finalize(buf);
-}
-
-/// calculate least-squares linear approximation to fit data
-/// ax+b = y (ss is an error of Y value)
-template <std::floating_point T>
-void least_squares_linear(
- const prak::vector<T> &xs,
- const prak::vector<T> &ys,
- const prak::vector<T> &ss,
- struct pvalue<T> &a,
- struct pvalue<T> &b)
-{
- if (xs.size() != ys.size() || xs.size() != ss.size()) {
- std::cout << "x.size() = " << xs.size()
- << ", y.size() = " << ys.size()
- << ", s.size() = " << ss.size() << std::endl;
- return;
- }
- [[assume(xs.size() == ys.size() && ys.size() == ss.size())]];
- size_t sz = xs.size();
-
- prak::vector<T> ones(sz);
- prak::vector<T> ssq(sz);
- prak::vector<T> ssq_m1(sz);
- prak::vector<T> buf(sz);
- prak::vector<T> buf_xs_ssq_m1(sz);
- std::fill(ones.begin(), ones.end(), (T)1); // ones: [1]
- vmul(ss.data(), ss.data(), ssq.data(), sz); // ssq: [ss*ss]
- vdiv(ones.data(), ssq.data(), ssq_m1.data(), sz); // ssq_m1: [1/ss^2]
- vmul(xs.data(), ssq_m1.data(), buf_xs_ssq_m1.data(), sz); // [xs / ss^2]
-
- const T *ysd = ys.data(),
- *xsd = xs.data();
- T *ssqd = ssq.data(),
- *ssq_m1d = ssq_m1.data(),
- *onesd = ones.data(),
- *bufd = buf.data(),
- *buf_xs_ssq_m1d = buf_xs_ssq_m1.data();
-
- vmul(buf_xs_ssq_m1d, xsd, bufd, sz); // buf: [xs^2 / ss^2]
- T d1 = vsum(bufd, sz); // sum([xs^2 / ss^2])
- T ssq_m1sum = vsum(ssq_m1d, sz); // sum(1 / ss^2)
- vmul(xsd, ssq_m1d, bufd, sz); // buf: [xs / ss^2]
- T d2 = vsum(buf_xs_ssq_m1d, sz); // sum([xs / ss^2])
- T D = d1 * ssq_m1sum - d2*d2; // sum((xs/ss)^2) * sum(1/ss^2) - sum(xs/ss^2)^2
-
- vmul(ysd, buf_xs_ssq_m1d, bufd, sz); // buf: [ys*xs/ss^2]
- T da1 = vsum(bufd, sz); // sum([ys*xs/ss^2])
- vmul(ysd, ssq_m1d, bufd, sz); // buf: [ys/ss^2]
- T da2 = vsum(bufd, sz); // sum([ys/ss^2])
- T DA = da1 * ssq_m1sum - da2 * d2; // sum([ys*xs/ss^2]) * sum([1/ss^2]) - sum([ys/ss^2]) * sum(xs/ss^2)
-
- T DB = d1 * da2 - d2 * da1; // sum([xs^2/ss^2]) * sum([ys/ss^2]) - sum([xs/ss^2]) * sum(ys*xs/ss^2)
-
- a.val = DA/D;
- a.err = sqrt(ssq_m1sum / D);
-
- b.val = DB/D;
- b.err = sqrt(d1 / D);
-}
-
-
-/// May throw std::bad_optional_access
-template <typename T>
-std::enable_if<std::is_arithmetic_v<T>, std::vector<pvalue<T>>>
-polynomial_regression(
- size_t degree,
- std::vector<T> data_x,
- std::vector<T> data_y,
- std::optional<std::vector<T>> data_errors = std::nullopt)
-{
- ++degree; // hack)
- size_t data_size = data_x.size();
- if (data_size != data_y.size() || (data_errors.has_value() && data_errors->size() != data_size))
- throw dimension_error("Xs, Ys or Sigmas do not match sizes");
- struct matrix<T> X(data_size, degree),
- Y(data_size, 1),
- B(degree, 1),
- W = matrix<T>::identity(data_size);
- // initialize X
- for (size_t row = 0; row < X.rows; ++row) {
- X.SUBSCR_OPRTR(row, 0) = 1;
- for (size_t col = 1; col < X.cols; ++col) {
- X.SUBSCR_OPRTR(row, col) = X.SUBSCR_OPRTR(row, col-1) * data_x[row];
- }
- }
- // initialize Y
- std::memcpy(Y.data(), data_y.data(), sizeof (T) * data_size);
- // initialize W
- if (data_errors.has_value()) {
- std::vector<T> &err_value = *data_errors;
- for (size_t i = 0; i < err_value.size(); ++i)
- W.data()[i * (data_size + 1)] = 1 / err_value[i] / err_value[i];
- }
- std::cerr << X << '\n' << Y << '\n' << W << '\n';
- matrix<T> X_T_W = X.tr() * W;
- matrix<T> tmp1 = (X_T_W * X).inv().value();
- B = tmp1 * X_T_W * Y;
- B.print();
- // TODO: FINISH (with covariation matrix)
- return {};
-}
-
-
-} // namespace prak